
P R O F. D R . M A R I O B E R TA

Q U A N T U M A L G O R I T H M S

R W T H A A C H E N U N I V E R S I T Y

Copyright © 2025 Prof. Dr. Mario Berta

Lecture notes, work in progress, feedback appreciated. Assistants: Gereon Kossmann (2025, 2024), To-
bias Rippchen (2023)

https://marioberta.info/teaching/

Latest update May 6, 2025

https://marioberta.info/teaching/

Contents

1 Overview 5
1.1 Introduction . 5

1.2 Organization . 6

1.3 Classical circuit model 8

1.4 Computational complexity theory 10

2 Quantum circuit model 13
2.1 Quantum systems . 13

2.2 Quantum bits and quantum gates 14

2.3 Quantum measurements 19

2.4 Remarks on quantum error correction 20

3 Quantum query complexity 23
3.1 Setting . 23

3.2 Deutsch’s problem . 24

3.3 Deutsch-Josza problem 24

3.4 Simon’s problem . 26

3.5 Other oracle based quantum algorithms 28

4 Quantum Fourier transform 29
4.1 Discrete Fourier transform 29

4.2 Quantum circuit . 29

4.3 Remarks on period finding and Shor’s algorithm . . . 32

5 Quantum phase estimation 35
5.1 Problem setting . 35

5.2 Quantum circuit . 36

5.3 Variations and caveats 37

6 Hamiltonian simulation 39
6.1 Task . 39

6.2 Commuting case . 41

6.3 Trotter based methods 42

6.4 Linear combination of unitary based methods 45

6.5 State-of-the-art methods and caveats 48

7 Ground state energy estimation 51
7.1 Task . 51

7.2 Mapping to qubit form 53

7.3 Quantum phase estimation 54

4

7.4 Quantum state preparation and other bottlenecks . . . 55

8 Quantum linear system solver (QLSS) 59
8.1 Task and classical landscape 59

8.2 Quantum task . 60

8.3 Quantum data access . 61

8.4 Basic quantum linear system solver 62

8.5 State-of-the-art methods and caveats 66

9 Quantum random access memory (QRAM) 69
9.1 Motivation . 69

9.2 Quantum state preparation: Basic ideas 69

9.3 Quantum state preparation: Circuits 72

9.4 Quantum read only memory (QROM) 74

9.5 Fanout QRAM . 75

9.6 Bucket-brigade QRAM 77

9.7 Extensions and caveats 78

10 Quantum singular value transform (QSVT) 81
10.1 Motivation . 81

10.2 Block encoding data access 81

10.3 Transformation of block encodings 82

10.4 Example polynomials . 84

Bibliography 87

1
Overview

1.1 Introduction

In this lecture, we will discuss what computational problems
can potentially be solved in more efficient ways using specialized
computing devices governed by the laws of quantum mechanics —
compared to solely using computing devices that are based on
the principles of classical physics. We will focus in particular on
problems in scientific computing, such as from quantum many
body physics and computational quantum chemistry.

Our considerations will be purely mathematical and as such
also hardware agnostic (independent of the exacts physics of the
underlying devices). In particular, we will assume that we have
noise free (error corrected) qubits and quantum gates at hand,
albeit potentially only a rather limited number thereof. This regime
is often termed early fault-tolerance (EFT), where the early part is
emphasizing that the number of qubits available might be limited
(or only available in a distributed fashion) and that the quantum
clock speed might be slow, not allowing to run too deep quantum
circuits.

We are then asking the question what, if any, problems from sci-
entific computing can potentially be solved significantly more effi-
cient by using EFT quantum technologies. Our threshold is thereby
that any quantum algorithm should be at least super-quadratically
faster than the corresponding state-of-the-art classical methods
for the same end-to-end solution of a well-defined problem of (at
least somewhat) broad scientific interest. Unfortunately, quantum
algorithms are often compared to textbook, deterministic classical
algorithms, which might make quantum methods look favorable.
However, in many cases modern classical methods from random-
ized linear algebra — also termed quantum inspired methods — scale
similarly as the quantum methods.

We will mostly focus on algorithms with provable worst case
performance guarantees, but heuristics for typical performances on
relevant instances will also be commented on from time to time.
Whereas, it is true that classical algorithms that perform well in
practice are often not exactly the same as the ones with the best

6 quantum algorithms

Classical
post-

processing

Quantum data
access model

01010101
01111

00010
110

Classical
data access

model

Our work

Quantum circuits

Classical
pre-

processing

Quantum

Classical
post-

processing

Classical
pre-

processing

Figure 1.1: Motivation of recent work
of our group, minimizing overall
quantum resource costs by employing
classical instead of quantum random
memory data access structures.

provable worst case performance guarantees, it is important to
realize that such findings are typically based on extensive practical
experiments and corresponding fine tuning. In contrast, we take the
viewpoint that in the quantum setting, the current nascent state of
quantum hardware largely only allows mathematical analyses to
make statements about sufficiently large instance sizes. Of course,
these worst-case performance guarantees may overlook further
advantages of quantum advantages that might becomes visible
once better hardware allows for improvements adapted to specific
problem instances of interest.

Our quantum algorithms will also extensively use classical sub-
routines for pre- and post-processing, and we will demand a holis-
tic viewpoint by asking to explicitly quantify all the classical and
quantum resources employed. That is, we will quantify the overall
resource costs not only in terms of algorithmic qubits and quan-
tum gates, but also in terms of quantum memory usage, classical
algorithmic costs, classical memory usage, etc.1 1 Samson Wang, Sam McArdle, and

Mario Berta. Qubit-efficient random-
ized quantum algorithms for linear
algebra. PRX Quantum, 5:020324, 2024

1.2 Organization

Lecture at RWTH Aachen: The lecture takes place every Tues-
day from 2:30pm to 4:00pm in room MBP2 116 and will also be
live streamed via Zoom (but not recorded). Physical attendance is
strongly recommended. The course is open to Physics, Computer
Science, Mathematics, Electrical Engineering, and Chemistry stu-
dents (with corresponding ECTS credit points). If fewer than 30

students will take the course, we will have oral exams; otherwise a
written exam.

Exercise lessons at RWTH Aachen: The weekly tutorials with
exercise sheets are run by Gereon Kossmann, starting in the sec-
ond week on Wednesday April 16 from 2:30pm to 3:15pm in room
MBP2 116. Besides discussing the sample solutions that will al-
ways come online one week after the exercise sheet, the tutorial will
also feature new content (that is in principle part of the examinable
content as well).

overview 7

In principle, no previous physics or computer science knowledge
is required (although it might of course help). We will work in ab-
stract and self-contained mathematical framework of computing
rules. As such, only a good working knowledge in linear algebra
is a prerequisite. Nevertheless, as the language of quantum theory
is mathematics — or more precisely linear algebra — this is a chal-
lenging applied mathematics lecture with interdisciplinary content.

Ultimately, the goal is to put you in a position to start thesis
work on quantum algorithms by diving deeper into some of the
presented subjects, both in terms of theory work and applied imple-
mentations. The course will largely be taught in black board style,
with concise lecture notes that are to be completed by the students
during the lectures (e.g., figures, etc.). The lecture notes might still
be updated during the term and any feedback would be highly
appreciated.

All teaching material is available online on RWTHmoodle (work
in progress).2 In addition, a short literature list is as follows. 2 https://moodle.rwth-aachen.de/

• Introductory book: Quantum Computation and Quantum In-
formation, Michael A. Nielsen and Isaac L. Chuang, Cambridge
University Press.

• More extensive lecture notes: Quantum Computing, Ronald de
Wolf, available online.3 3 http://arxiv.org/abs/1907.09415

• Complementary lecture notes: Quantum Algorithms, Andrew M.
Childs, available online.4 4 http://www.cs.umd.edu/~amchilds/

qa/

• Mathematical lecture notes: Quantum Computation, Ashley
Montanaro, available online.5 5 https://people.maths.bris.ac.uk/

~csxam/teaching/qc2020/

• Research level lecture notes: Quantum Algorithms For Scientific
Computation, Lin Lin, available online.6 6 https://math.berkeley.edu/

~linlin/qasc/

A wiki like review article on end-to-end complexities of state-of-
the-art quantum algorithm design — including a critical assess-
ment — is also available online.7 As mentioned in the introduction, 7 Alexander M. Dalzell, Sam McArdle,

Mario Berta, Przemyslaw Bienias,
Chi-Fang Chen, András Gilyén, Con-
nor T. Hann, Michael J. Kastoryano,
Emil T. Khabiboulline, Aleksander
Kubica, Grant Salton, Samson Wang,
and Fernando Brandão. Quantum al-
gorithms: A survey of applications and
end-to-end complexities. 2023b. URL
http://arxiv.org/abs/2310.03011

we will exclusively treat the theory of quantum algorithm devel-
opment, with a focus on problems from scientific computing. In
particular, the following topics around quantum technologies will
not be covered in the lecture:

• Quantum hardware and device physics

• Analogue quantum simulators

• Algorithms for noisy and intermediate-scale (NISQ) quantum
processing units8 8 John Preskill. Quantum Computing

in the NISQ era and beyond. Quantum,
2:79, 2018• Quantum error correction

• Quantum programming

https://moodle.rwth-aachen.de/
http://arxiv.org/abs/1907.09415
http://www.cs.umd.edu/~amchilds/qa/
http://www.cs.umd.edu/~amchilds/qa/
https://people.maths.bris.ac.uk/~csxam/teaching/qc2020/
https://people.maths.bris.ac.uk/~csxam/teaching/qc2020/
https://math.berkeley.edu/~linlin/qasc/
https://math.berkeley.edu/~linlin/qasc/
http://arxiv.org/abs/2310.03011

8 quantum algorithms

• Quantum information theory

• Quantum cryptography

• Post-quantum cryptography

Around these other topics, some related lectures at RWTH Aachen
are:9 9 Check out https://qc.rwth-aachen.

de/ regarding quantum computing
theory efforts at RWTH Aachen.• Introduction to Quantum Computing (Computer Science)

• Near-term Quantum Computation (Computer Science)

• Quantum Algorithms Seminar (Computer Science)

• Quantum Information (Physics)

• Quantum Information Seminar (Physics)

• Superconducting Qubit Circuits (Physics)

• Experimental Quantum Computing with Superconducting
Qubits (Physics)

• Spin Qubits (Physics)

• Quantum optics (Physics)

• Building a Quantum Computer (Physics)

• Quantum mechanics for electrical engineers (Electrical Engineer-
ing)

• Any more?

Next, and before we introduce the general mathematical frame-
work of quantum algorithms in Chapter 2, we first briefly discuss
classical algorithms and complexity theory through a certain lens
that is adapted for generalization to the quantum setting.10 10 The remaining part of Chapter 1 is

inspired and partly adapted from the
lecture notes Quantum Information The-
ory, Matthias Christandl, WS 2009/2010
LMU.

1.3 Classical circuit model

One way to think about classical algorithms (that will be our way in
to generalize to the quantum setting) is in terms of classical circuits
or circuits. Namely, in the circuit model, for an n-bit input m-bit
output function

f : {0, 1}n → {0, 1}m with n, m ∈ N, (1.1)

we draw a graphical representation in terms of a box with n input
wires and m output wires. Concrete inputs and/or outputs can also
be labeled:

0

f

0
1 0
0

Moreover, the truth table identifies output with inputs.

https://qc.rwth-aachen.de/
https://qc.rwth-aachen.de/

overview 9

Example 1. Consider the parity function, which takes n input bits xi and
maps them to the one bit output

f (x1x2 · · · xn) =
n⊕

i=1

xi , (1.2)

where
⊕

denotes addition modulo 2. For n = 2, its truth table is given by

input output
00 0
01 1
10 1
11 0

For computing general functions in the circuit model, one might
then decompose the function of interest in terms of elementary gates.
Common choices of elementary gates include the

• NOT gate
x NOT x = x ⊕ 1

• AND gate
x

AND
x ∧ y = x · y

y

• NAND gate

AND
NOT

• OR gate
x

OR
x ∨ y

y

• XOR gate
x

XOR
x ⊕ y

y

• NOR gate

OR
NOT

• FANOUT gate
x

FANOUT
x

x

• TOFOLLI gate
x

TOFOLLI

x
y y

z z ⊕ x · y

Exercise 2. Write down the truth tables for all the elementary gates above.

10 quantum algorithms

Importantly, every function can be written in terms of elemen-
tary gates and one might for example use the following universal set
(other choices are possible).

Proposition 3 (Universality I). By using the elementary gates NOT,
AND, OR, and FANOUT every function can be computed.

Proof. The proof is part of Exercise Sheet 1.

Now, on the one hand, this means that any function on n bits
can be decomposed into 2n elementary gates. On the other hand,
for functions that can be evaluated efficiently we are aiming for
decompositions into polynomial many elementary gates in the input
length n. We will revisit this point soon in Section 1.4 on complexity
classes.

As an interesting variation, it is possible to instead only use
reversible gates as elementary gates.

Proposition 4 (Universality II). By using the elementary TOFFOLI gate,
every function can be computed.

Proof. The proof is part of Exercise Sheet 1.

One motivation for this is as follows: For non-reversible circuits,
it can be argued that when computing, erasing information always
increases the entropy of the system and therefore leads to heat
dissipation.11 Additionally, we will see in Chapter 2 that reversible 11 Rolf Landauer. Irreversibility and

heat generation in the computational
process. IBM Journal of Research and
Development, 5(3):183, 1961

circuits are conceptually close to quantum circuits.
As an extension of deterministic algorithms, for probabilistic

algorithms, the circuits act on n-bit valued probability distributions
as inputs, with corresponding m-bit valued probability distributions
as outputs. That is, the wires then do not have definite values but
only take certain values with certain probabilities. Note that the
number of different n-bit strings in {0, 1}n is 2n — and as such the
space of all possible input (or output) values is exponential in n.

1.4 Computational complexity theory

For any given function, the central question of computational com-
plexity theory is how many elementary gates are needed to com-
pute it. In principle, one is thereby equally interested in upper
bounds, i.e., concrete circuit decompositions of the function into
elementary gates, as well as lower bounds, showing that a certain
number of elementary gates is needed.12 12 Boaz Barak and Sanjeev Arora.

Computational Complexity: A Modern
Approach. Cambridge University Press,
2007

Instead of looking at functions of fixed input-output size and
counting the concrete number of elementary gates needed, one
typically studies families of different sized instances, labeled by a
parameter n ∈ N, and is then interested in the scaling for n → ∞.
To quantify corresponding complexity upper and lower bounds,
there is the big O notation in computer science:

overview 11

1. f (n) = O(g(n)) if and only if there exist c > 0 and n0 ∈ N such
that for all n ≥ n0, we have f (n) ≤ c · g(n)

2. f (n) = Ω(g(n)) if and only if there exist c > 0 and n0 ∈ N such
that for all n ≥ n0, we have f (n) ≥ c · g(n)

3. f (n) = Θ(g(n)) if and only if we have f (n) = O(g(n)) and
f (n) = Ω(g(n))

A simple example is as follows.

Example 5. The computational complexity of the parity function is O(n).

Often, the exact computational complexity of functions is not
known.

Example 6. For the multiplication of two n-bit numbers the textbook
algorithm gives O(n2). However, we actually have O(n log n).13 Only 13 David Harvey and Joris van der

Hoeven. Integer multiplication in time
O(nlog n). Annals of Mathematics, 193

(2):563, 2021

the trivial lower bound Ω(n) is known and it is a fundamental open
problem what is the complexity of multiplication.

We can equally well talk about matrix functions, a prominent
example is as follows.

Example 7. For matrix multiplication of two n × n matrices A and B,
the textbook algorithm

(A · B)i,j =
n

∑
k=1

(A)i,k(B)k,j (1.3)

gives O(n3), whereas there is also the trivial lower bound Ω(n2). Can
you come up with a matrix multiplication algorithm with complex-
ity better than O(n3)? The current record for matrix multiplication is
O(n2.371339).14 In Exercise Sheet 1, you will work through the Strassen 14 Josh Alman, Ran Duan, Vir-

ginia Vassilevska Williams, Yinzhan
Xu, Zixuan Xu, and Renfei Zhou.
More asymmetry yields faster ma-
trix multiplication, 2024. URL
http://arxiv.org/abs/2404.16349

algorithm, which has complexity O(nlog2 7).

The big O-notation hides any (potentially large) constants and
as such asymptotically optimal algorithms do not necessarily need
to be practical for any finite size instance. Nevertheless, by coarse
graining even further, we typically think of circuits that are poly-
nomial in input length of the problem as being efficient. One can
then categorize into (asymptotic) complexity classes. Very informally
speaking, some prominent examples which focus on time complex-
ity include:

• All problems that can be computed with (classical) circuits that
are polynomial in input length (=number of bits) make up the
complexity class polynomial-time P.

• All problems that can be computed with error probability at
most 1/3 and probabilistic (classical) circuits that are polyno-
mial in input length make up the complexity class bounded-error
probabilistic polynomial time BPP.

• All problems for which answers can be checked with (classical)
circuits that are polynomial in input length are in the complexity
class non-deterministic polynomial-time NP.

http://arxiv.org/abs/2404.16349

12 quantum algorithms

A famous problem that is known to be in NP, but not in P or BPP

is as follows.15 15 It is a fundamental open question in
theoretical computer science if P = NP
or P ̸= NP.Example 8. Integer factorization: Given an n-bit number, find its prod-

uct decomposition into prime numbers. The general number field sieve
algorithm roughly gives

O
(

exp
(

1.9 · n1/3(log n)2/3
))

. (1.4)

Integer factorization is in NP as multiplication is in P, but is integer
factorization in BPP?16 16 Peter W. Shor. Polynomial-time

algorithms for prime factorization
and discrete logarithms on a quantum
computer. SIAM Review, 41(2):303,
1999

As the landmark result of quantum computing, Shor showed that
there is a quantum algorithm for integer factorization with quan-
tum gate complexity

O
(

n2 log n
)

, (1.5)

a super-polynomial (nearly exponential) quantum speed-up com-
pared to the complexity of the best known classical algorithm.

In this course, we are mostly interested in the theory of quan-
tum algorithm development, and as such will only comment on
complexity lower bounds from time to time. In the next chapter,
we introduce the quantum circuit model to formalize what exactly
are quantum algorithms and quantum computational complexity
theory.

2
Quantum circuit model

2.1 Quantum systems

We know that the laws of physics qualitatively change on different
length scales and energy levels. For example, whereas objects on an
everyday length scale behave according to the mathematical laws of
classical mechanics, objects at the length scale of single molecules
or atoms behave according to the mathematical laws of quantum
mechanics. Those two theories are fundamentally different in math-
ematical structure and consequently physical predictions.

Now, when working with smaller and smaller fundamental com-
ponents of processing units, quantum effects are at first unwanted
effects which cause noise and as such great efforts are made in
chip development to suppress any quantum mechanical behavior.
However, turning things around, one might ask if these quantum
mechanical effects can be made use of computationally? Funda-
mentally, this corresponds to the exciting scientific question what
nature can compute efficiently. Intuitively, we might expect that
such quantum based computing devices are more efficient to com-
putationally resolve physical and chemical systems described by
quantum mechanics. While we will not concern us with how, if,
and when quantum computing devices can be built, our interest
lies in in the theoretical computer science, algorithmic aspect of the
proposal.

Now, computer scientists generally believe(d) in something
called the extended Church-Turing thesis. It states that a proba-
bilistic Turing machine can efficiently simulate any realistic model
of computation, where the word efficiently here means up to
polynomial-time reductions. So following this (and without for-
mally defining Turing machines), it can be said that quantum cir-
cuits should not allow for large computational speed-up compared
to classical circuits.

Shor’s integer factorization algorithm shows that either the ex-
tended Church-Turing is wrong or that integer factorization is in
BPP. Both came as huge surprises at the time, but one must be true
(and we do not know which one).

14 quantum algorithms

In this lecture, we will treat the mathematical framework of de-
vices behaving as so-called closed quantum systems. This means that
we assume perfect shielding of the devices from the environment,
as well as perfect control to exactly carry out any operation allowed
by the mathematical laws of quantum mechanics. In particular,
there is no noise and there are no failures allowed in this model.

A small disclaimer is in order here. As with other non-standard
notions of analogue computation, one has to make sure that there
are no hidden (and potentially exponentially large) physical costs
to actually implement the assumed model.1 For quantum circuits, 1 Here is an example: Relativity

computing. Namely, just start your
computer working on an otherwise
intractable problem, board a spaceship,
accelerate exponentially close to the
speed of light, and come back to earth
after a constant time. According to the
theory of special relativity time will
have elapsed exponentially slower in
your reference frame compared to the
computer’s reference frame on earth
and the computation will have finished
upon your return. What is the catch?

these concerns can be averted by a careful analysis of quantum
error correction codes, which shows that at least in principle faulty
device component can be operated with arbitrarily low noise rates;
under the cost of only a low overhead. We briefly touch upon that
subject in Section 2.4.

2.2 Quantum bits and quantum gates

To emphasize again: We are neither concerned with the actual
physical laws of quantum theory nor based on what concrete tech-
nology things are implemented. Rather, we now introduce a purely
abstract mathematical model for quantum computation, the quan-
tum circuit model.

Our starting point is the classical circuit model and in particular
its probabilistic version. As an example, recall the TOFFOLI gate
acting on 3 bits as

x

TOFFOLI

x
y y

z z ⊕ x · y

Writing the possible input bit strings

{0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111} (2.1)

in vector form 000 ≡ (0, 0, 0, 0, 0, 0, 0, 0)T , 001 ≡ (0, 0, 0, 0, 0, 0, 0, 0)T ,
etc.,2 the action of the Toffoli gate with respect to the computational 2 The transpose is given as

(1, 0, 0, 0, 0, 0, 0, 0)T =



1
0
0
0
0
0
0
0


.

basis can be written in matrix form as

UTOFOLLI =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(2.2)

That is, for any input distribution described by a vector

p⃗in ∈ R23

≥0 =
3×

i=1

R2
≥0 with norm ∑

i
|pi| = 1, (2.3)

quantum circuit model 15

the corresponding output distribution is computed as the normal-
ized vector

p⃗out = UTOFOLLI · p⃗in ∈ R23

≥0 . (2.4)

Note further that since TOFOLLI is a reversible gate, its matrix repre-
sentation UTOFOLLI is orthogonal, i.e., UT

TOFOLLI = U−1
TOFOLLI.

Now, the axioms of quantum computing, or more precisely the
quantum circuit model are:

• A single quantum bit — termed qubit — is mathematically de-
scribed by a complex vector ψ⃗ = (α0, α1)

T ∈ C2 that is normal-
ized ∥ψ⃗∥2 =

√
|α0|2 + |α1|2 = 1 (with |α|2 = αα). The coefficients

are called quantum amplitudes.

• Multiple qubits are described by normalized complex vectors ψ⃗n

in the tensor product of the individual C2 spaces. That is, for n
qubits ψ⃗n ∈ ⊗n

i=1C2 = C2n
.

• Quantum gates described by complex unitary matrices U, that
is, UT

= U−1, taking input complex vectors to output complex
vectors. For n-qubit gates the dimension of U is 2n × 2n.

Complex vectors that describe qubits are termed quantum states
and instead of the vector notation ψ⃗, we will also use the physicist’s
Dirac bra-ket notation. For one qubit it takes the form

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
, (2.5)

and a general one qubit quantum state is then written as

|ψ⟩ = α0|0⟩+ α1|1⟩ =
(

α0

α1

)
= ψ⃗ , (2.6)

with the normalization
√
|α0|2 + |α1|2 = 1. Consequently, a two

qubit state can be written as

|ψ2⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩ (2.7)

16 quantum algorithms

with the normalization
√

∑k∈{0,1}2 |αk|2 = 1 and for

|00⟩ = |0⟩ ⊗ |0⟩ =
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

 (2.8)

|01⟩ = |0⟩ ⊗ |1⟩ =
(

1
0

)
⊗
(

0
1

)
=


0
1
0
0

 (2.9)

|10⟩ = |1⟩ ⊗ |0⟩ =
(

0
1

)
⊗
(

1
0

)
=


0
0
1
0

 (2.10)

|11⟩ = |1⟩ ⊗ |1⟩ =
(

0
1

)
⊗
(

0
1

)
=


0
0
0
1

 . (2.11)

Two qubit states that cannot be written as a product of single qubit
states are correlated between the qubits and are called entangled.
You will explore the consequences of these quantum correlations in
Exercise Sheet 2.

The graphical notation for gates stays the same as in the classical
case,

U

just with the implicit understanding we are now operating with
potentially complex entries. In particular, all reversible classical
gates are also quantum gates. Prominent examples of one qubit
gates are the

• X =

(
0 1
1 0

)
gate

X

• Y =

(
0 −i
i 0

)
gate

Y

• Z =

(
1 0
0 −1

)
gate

Z

• Hadamard H = 1√
2

(
1 1
1 −1

)
gate

H

quantum circuit model 17

• phase S =

(
1 0
0 i

)
gate

S

• T =

(
1 0
0 exp(iπ/4)

)
gate

T

An important two qubit gate is the CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 gate

|x⟩
CNOT

|x⟩
|y⟩ |x ⊕ y⟩

often also written as
|x⟩ • |x⟩

|y⟩ |x ⊕ y⟩
denoting that it corresponds to a controlled NOT gate. One can also
implement general controlled U-gates

|x⟩ • |x⟩

|y⟩ U Ux|y⟩

The 3 qubit Toffoli gate can in fact be seen as a controlled-controlled
NOT gate as

|x⟩ • |x⟩
|y⟩ • |y⟩

|z⟩ |z ⊕ x · y⟩

Another two qubit gate of interest is the SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


gate denoted as

|x⟩ × |y⟩
|y⟩ × |x⟩

Exercise 9. Check that the matrix representations given above and the
Toffoli gate indeed act as claimed in the circuit diagrams.

In order to build up to the understanding of more advanced
quantum algorithms, it is crucial that you get a good hands on
experience how to work with quantum states and how quantum
gates transform them. Here is an example of a circuit identity

• • • •

• = • •

U V V† V

18 quantum algorithms

Exercise 10. What quantum gate / unitary matrix is V in the above
circuit identity?

You will explore some more examples in Exercise Sheet 2. In
particular, there is the so called no-cloning theorem, which states that
there does not exist a universal cloning quantum gate that exactly
copies arbitrary quantum states. You will explore and prove this
theorem in Exercise Sheet 2.

As only reversible gates, i.e., unitary matrices, are allowed in
the quantum circuit model, how should we implement a general
function f : {0, 1}n → {0, 1}m? One way is to use the two qubit
quantum gate U f defined as

|x⟩
U f

|x⟩

|y⟩ | f (x)⊕ y⟩

Exercise 11. Check that U f is indeed unitary for any function f .

In the classical circuit model we found different elementary gate
sets that are universal, i.e., every function can be written in terms of
these gates. We should then ask the same question about universal
sets in the quantum circuit model. In the following, we work with
one and two qubit gates, but slightly relax the condition to approx-
imate universality. Namely, we are looking for a decomposition of
general n qubit gates U as∥∥∥∥∥U −

t

∏
i=1

Ui

∥∥∥∥∥
∞

≤ ε (2.12)

in terms of some elementary gates {U1, U2, · · · , Ut}, some small
ε ≥ 0, and the infinity norm ∥O∥∞ = sup|ψ⟩ ∥O|ψ⟩∥2 for quantum
states |ψ⟩ which are normalized complex vectors.3 3 A Yu Kitaev. Quantum computations:

algorithms and error correction.
Russian Mathematical Surveys, 52:1191,
1997

Proposition 12 (Solovay-Kitaev). The set {CNOT, H, T} is universal
with t = polylog(1/ε), where polylog(n) = O((log n)k) for some k ∈ N.
That is, arbitrary quantum gates can be approximated up to exponentially
small error with only a polynomial overhead.

Proving this statement will not be part of this course, but we
notice that finding such decompositions with as efficient as possible
polylog overhead terms is an ongoing and important research topic.

Similarly as in the classical case, any unitary 2n × 2n matrix
acting on n qubits can now be (approximately) decomposed into
O(n · 4n) elementary quantum gates. However, efficiently imple-
mentable quantum algorithms allow for a decomposition into only
polynomial (in n) many quantum gates. Informally, this corre-
sponds to the quantum analogue of the complexity class BPP:

• All problems that can be computed with error probability at
most 1/3 and quantum circuits that are polynomial in input

quantum circuit model 19

length make up the complexity class bounded-error quantum poly-
nomial time BQP.

The question about large quantum speed-up compared to clas-
sical algorithms is then how BQP is related to BPP. We have the
inclusion BPP ⊆ BQP and integer factorization is a problem that is
known to be in BQP, but not known to be in BPP. However, notice
that there is NO proven separation between the two complexity
classes. That is, in principle it could still be that BPP = BQP and
as such there would be no quantum advantage in Shor’s algorithm.
This illustrates the importance of studying complexity theory.

In the next section, we will discuss the last missing ingredient
of the mathematical framework of quantum computing. Namely,
how to actually read out results from the quantum state outputs of
quantum circuits!

2.3 Quantum measurements

In order to read out (some of the) classical information contained
in quantum states, quantum measurements are applied. For our
purposes, so-called measurements in the computational basis are
sufficient:

• A qubit state |ψ⟩ = α0|0⟩ + α1|1⟩ measured in the computational
basis {0, 1}, leads to the post-measurement binary probability
distribution

{
p0 = |α0|2, p1 = |α1|2

}
, where p0 corresponds to

observing the value 0 and p1 to the value 1. (Note the normaliza-
tion |α0|2 + |α1|2 = 1.)

• Whenever a measurement is applied, only one measurement
outcome will actually be observed (0 or 1). In order to resolve
the post-measurement probability distribution one then needs
to run the quantum circuit a few times, record the observed out-
come every time, and this gives a statistical sample of the true
distribution.

• In the same way n qubit states |ψ⟩ = ∑k∈{0,1}n αk|k⟩ are mea-
sured in the computational basis {0, 1}n, leading to the post-
measurement probability distribution

{
pk = |αk|2

}
k over all

possible outcomes labelled by the binary strings in {0, 1}n.

The corresponding quantum circuit symbol is a measurement box,
e.g., as follows

|0⟩ H

In this example, the Hadamard H gate takes the quantum state |0⟩
to the quantum state 1√

2
(|0⟩+ |1⟩) and the probability of observing

0 or 1 becomes 1/2 each.
Now, without loss of generality a quantum algorithm on n qubits

starts in the all zero state |0 · · · 0⟩ = |0⟩ ⊗ · · · ⊗ |0⟩, applies a certain

20 quantum algorithms

number of elementary quantum gates (from some universal set),
and applies measurements on some of the qubits. The output is
then a probability distribution over the computational basis of the
measured qubits. Here is an example

|0⟩ U • H

|0⟩

|0⟩ H •

Having put together the framework for quantum computing,
what is intuitively the power of quantum circuits compared to clas-
sical circuits? The complex nature of the framework allows negative
amplitudes, which can lead to positive interference patterns. That and
only that is the mathematical reason for observed quantum speed
up compared to classical circuits. Do not believe anything else said
or claimed in the popular literature!

In Chapter 3, we discuss some simple toy examples of positive
interference patterns in quantum circuits that will give a classical-
quantum separation in query complexity.

2.4 Remarks on quantum error correction

Modern classical hardware is extremely reliable and the assumption
of perfect control and no noise is typically reasonable. For typical
quantum hardware, however, this is a priori not at all the case.
This has to do with both, the very physical nature of the quantum
mechanical effects that quantum computing builds on, as well as
with the nascent state of quantum technology with only limited
control and shielding available against the environment. As such,
one needs to argue why the mathematical model of closed quantum
systems with noise free gates and measurements still makes sense.

The answer to this question is quantum error correction. The ba-
sic idea of classical error correction is to build in redundancy. For
example, say a bit x is flipped with probability p ∈ (0, 1/2). First
storing three copies xxx of the bit and then doing a majority vote
the decode back to one bit gives the overall improved error proba-
bility

3p2(1 − p) + p3 = p2(3 − 2p) < p . (2.13)

This is the binary repetition code and exemplifies the main principle
behind error correction. Similar ideas work in the quantum realm,
even though some adaptions are necessary due to the no-cloning
theorem! Moreover, computations need to be performed on the en-
coded qubits and the encoding and decoding itself might be faulty
etc. All these problems are addressed by the threshold theorem for
quantum error correction.4 4 Dorit Aharonov and Michael Ben-Or.

Fault-tolerant quantum computation
with constant error rate. SIAM Journal
on Computing, 38:1207, 2008

quantum circuit model 21

Theorem 13 (Quantum Fault-Tolerance). Under reasonable (physical)
assumptions on the noise model, any n qubit quantum circuit with g(n)
quantum gates and measurements can be simulated with probability 1 − ε

using

O(g(n) · polylog(g(n)/ε)) (2.14)

many noisy gates and measurements, provided that every component fails
with probability p < ptr, where ptr denotes a threshold that is in the range
of 10−3 to 10−4.

Hence, even with faulty components, arbitrarily long compu-
tations can be performed with arbitrarily small error (for a small
overhead cost). Proving this theorem is beyond the scope of this
course (which focuses on quantum algorithms).5 The development 5 It is part of the concurrent RWTH lec-

tures Quantum Information in Physics.of state-of-the-art quantum error correcting codes is a very active
research field both in academia and industry.

To conclude, based on our current understanding of physics, we
do not know of any reasons that quantum computing is not possi-
ble to implement and scale. Even though it is in principle thinkable
that quantum computing is prohibited by some yet undiscovered
new physics, many physicists would argue that this would actually
be a most exciting outcome of the efforts of realizing quantum tech-
nologies. Check out6 for a more in-depth critical discussion around 6 https://www.scottaaronson.com/

democritus/lec14.htmlthe feasibility of quantum computing.

https://www.scottaaronson.com/democritus/lec14.html
https://www.scottaaronson.com/democritus/lec14.html

3
Quantum query complexity

3.1 Setting

In this chapter you are provided a first glimpse of the power of
complex numbers in the quantum circuit model, allowing for
positive interference effects whenever the problem of interest has
enough structure or symmetries. For this we work in the framework
of query complexities, where black box access to some oracle is given,
and the goal is to resolve some property of the oracle using the
minimal number of queries. More precisely, our way to model an
oracle is as a function f : {0, 1}n → {0, 1}m and querying the oracle
means inputting an n bit string, after which the corresponding out-
put m bit string is received. For example, you might want to find
an input bit string x such that the output bit string is the all zero
string: f (x) = 0 · · · 0.

To compare classical with quantum query complexities, we need
a reversible, quantum version of the oracle to the function f . This is
achieved as in Exercise 11 above with the quantum circuit

|x⟩
U f

|x⟩

|y⟩ | f (x)⊕ y⟩

Importantly, given the ability to make a classical query to f , above
quantum circuit U f will allow to query the function f in the quan-
tum circuit model (without knowing anything more about the inner
structure of f). Or in other words, U f is a quantum analogue for
implementing the function f .

One of the advantages of query complexities model is that it is
much easier to prove lower bounds. As a consequence, we will see
that (large) separations between classical and quantum query com-
plexities can be proven. On the other hand, the downside of the
query complexity model is that it does not say anything about how
the function f is actually implemented (as only the queries to it are
counted). Consequently, it is important to realize that query com-
plexity separations do in general not give computational complexity
separations. Nevertheless, as a toy model, query complexities give
a simple, first way of illustrating the power of the quantum circuit
model.

24 quantum algorithms

3.2 Deutsch’s problem

Given a function f : {0, 1} → {0, 1}, decide whether f is constant
or balanced. That is, what is the value of f (0)⊕ f (1)? Classically,
and to answer definitely, one needs to query the oracle for f twice
to determine this.

What can be done in the quantum setting? Let’s figure out what
are the measurement outcomes in the quantum circuit

|0⟩ H
U f

H

|0⟩ X H H |1⟩

The evolution of the input quantum state leading up to the quan-
tum measurement is

|0⟩ ⊗ |0⟩ 7→ |0⟩ ⊗ |1⟩ (3.1)

7→ 1√
2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩ − |1⟩) (3.2)

7→ 1√
2

(
(−1) f (0)|0⟩+ (−1) f (1)|1⟩

)
⊗ 1√

2
(|0⟩ − |1⟩) (3.3)

7→ 1
2

(
(−1) f (0) + (−1) f (1)

)
|0⟩ ⊗ |1⟩

+
1
2

(
(−1) f (0) − (−1) f (1)

)
|1⟩ ⊗ |1⟩ . (3.4)

Measuring the first qubit will lead to the outcome 0 with probabil-
ity

p0 =

(
1
2

(
(−1) f (0) + (−1) f (1)

))2
= f (0)⊕ (1) , (3.5)

which is equal to one for constant functions (and equal to zero for
balanced functions). One quantum query to the function in the
form of U f turns out to be enough! In the next section, we will see
that this separation of one vs two query can in fact be scaled to an
exponential separation.

3.3 Deutsch-Josza problem

Given a function f : {0, 1}n → {0, 1} with the promise that either f
is constant (all 0 or all 1) on all inputs or balanced (equal number of
0’s and 1’s), i.e., of the form

|{x : f (x) = 0}| = |{x : f (x) = 1}| = 1
2
· 2n . (3.6)

Decide which one is the case. Classically, and to answer definitely,
one needs to query the oracle 2n−1 + 1 times to determine this.

The Deutsch-Josza quantum algorithm solves this problem with

quantum query complexity 25

only one quantum query to the function f in the form U f as

|0⟩ H

U f

H

|0⟩ H H

...
...

...
...

|0⟩ H H

|1⟩ H H

The evolution of the input quantum state leading up to the quan-
tum measurement is

|0⟩⊗n ⊗ |1⟩ 7→ 1√
2n+1 ∑

x∈{0,1}n
|x⟩ ⊗ (|0⟩ − |1⟩) (3.7)

7→ 1√
2n+1 ∑

x∈{0,1}n
(−1) f (x)|x⟩ ⊗ (|0⟩ − |1⟩) (3.8)

7→ 1√
2n ∑

x∈{0,1}n
(−1) f (x)

 1√
2n ∑

y∈{0,1}n
(−1)x·y|y⟩

⊗ |1⟩

(3.9)

= ∑
y∈{0,1}n

 1
2n ∑

x∈{0,1}n
(−1) f (x)+x·y

 |y⟩ ⊗ |1⟩ (3.10)

with the inner product x · y = ∑k xkyk, and where we used that

H⊗n|x⟩ = 1√
2n

(
|0⟩+ (−1)x1 |1⟩

)
(· · ·)

(
|0⟩+ (−1)xn |1⟩

)
(3.11)

=
1√
2n ∑

y∈{0,1}n
∏

yk=1
(−1)xk |y⟩ (3.12)

=
1√
2n ∑

y∈{0,1}n
(−1)x·y . (3.13)

After measuring all qubits, the probability of getting the all zero bit
string 0 · · · 0 is

p0···0 =

 1
2n ∑

x∈{0,1}n
(−1) f (x)

2

. (3.14)

Thus, if f is balanced, p0···0 = 0 and otherwise p0···0 = 1.

This is the promised exponential query separation separation, one
quantum query vs Θ (2n) deterministic classical queries.

However, what happens in the classical case if you are allowed
to use randomness and only have to give the right answer with
high probability? You will explore this in Exercise Sheet 3, but the
short answer is that the large quantum query complexity advantage

26 quantum algorithms

collapses. In the next section, we discuss a query complexity prob-
lem that allows for an exponential separation between the classical
and quantum setting, even if randomness and non-perfect success
probabilities are allowed.

3.4 Simon’s problem

Given a function f : {0, 1}n → {0, 1}n with the promise that for
some unknown period c ∈ {0, 1}n we have for all x, y ∈ {0, 1}n that

f (x) = f (y) ⇔ x = y ⊕ c , (3.15)

determine c. For a deterministic classical algorithm we can just
evaluate up to half of the inputs before we get a repeat, and then
use that

x = y ⊕ c ⇒ x ⊕ y = y ⊕ c ⊕ y = c . (3.16)

If we still cannot find a match then c = 0 · · · 0. As such, in the worst
case we need 2n−1 + 1 queries to f .

Crucially, it can now also be proven that even probabilistic clas-
sical algorithms succeeding with high probability, need at least
Ω(

√
2n) queries to f . This lower bound can also be achieved by a

classical scheme based on the so-called birthday paradox. Namely,
how many random queries Q does one has to make in order to ob-
serve a collision — i.e., getting the same entry twice — with high
probability? We give a proof sketch that for Q =

√
2n+1 the expected

value for the number of collisions is roughly one.1 Namely, for 1 An extended argument can also be
made for the claimed worst case high
probability of success.

queries j1, j2, · · · , jQ, how large is the probability that we do not
witness a collision (in the case c ̸= 0 · · · 0)? There are (Q

2) pairs that
could be a collision and the collision probability is 1

2n−1 . Hence, the
expected number of collisions is

(Q
2)

2n − 1
≈ Q2

2n+1 , (3.17)

and Q =
√

2n+1 suffices.
In the quantum setting — together with classical post-processing —

it turns out that O(n) quantum queries suffice.2 The quantum cir- 2 Daniel R. Simon. On the power of
quantum computation. SIAM Journal
on Computing, 26:1474, 1997

cuit uses 2n qubits as

|0⟩ H

U f

H

...
...

...
...

|0⟩ H H

|0⟩

...
...

...

|0⟩

quantum query complexity 27

The evolution of the input quantum state leading up to the first
round of quantum measurements is

|0⟩⊗n ⊗ |0⟩⊗n 7→ 1√
2n ∑

x∈{0,1}n
|x⟩ ⊗ |0⟩⊗n (3.18)

7→ 1√
2n ∑

x∈{0,1}n
|x⟩ ⊗ | f (x)⟩ . (3.19)

Upon measuring the second half of the qubits and conditioned on
observing as the measurement outcome some n-bit string f (x), the
state of the first half of the qubits is

1√
2
(|x⟩+ |x + c⟩) , (3.20)

and applying the n-fold Hadamard gate leads with the identity
from Eq. (3.13) to

1√
2 · 2n

 ∑
z∈{0,1}n

(−1)x·z|z⟩+ ∑
z∈{0,1}n

(−1)(x⊕c)·z|z⟩


=

1√
2 · 2n

· ∑
z∈{0,1}n

(−1)x·z (1 + (−1)c·z) |z⟩ . (3.21)

Now, the final measurements will give uniformly random outcomes
from the set {z : c · z = 0}, with the sought-after c. Hence, upon
every run of the circuit, this generates a (binary) linear equation
for the unknown n-bit string c. Collecting n − 1 independent lin-
ear equations would then be sufficient to solve for c, as the other
known solution is the all zero bit string 0 · · · 0. It can be argued that
O(n) many runs will lead with high probability to n − 1 indepen-
dent equations and then standard Gaussian elimination of classical
complexity O(n3) allows to solve for c.3 3 Other gates (classical and quantum)

are neglected in this analysis, as we are
only interested in query complexity.
However, the number of such gates
is upper bounded by O(n3), so there
is no hidden exponential complexity
blow-up.

We find the promised exponential separation between random-
ized classical Θ(

√
2n) and quantum O(n) query complexity. This

was the first proven exponential separation between randomized
classical and quantum!

Note that this is really the setting we want to find separations
for, randomness is cheap and having a success probability close to
one is sufficient in practice (as one can then always repeat the algo-
rithm a couple of times and boost the success probability arbitrarily
close to one).

Of course, we are still in the query complexity setting, but Si-
mon’s quantum algorithm as above can actually be seen as the pre-
decessor or the motivation for Shor’s quantum integer factorization
algorithm —- which the gives quantum computational complexity
super-polynomial better than the most efficient classical algorithm
known. In the next chapter, we start by treating the main quantum
sub-routine of Shor’s algorithm, the quantum Fourier transform.

28 quantum algorithms

3.5 Other oracle based quantum algorithms

Before we leave the quantum query complexity setting, we should
note that there is a plethora of other query complexity based al-
gorithms with quantum advantages to be found in the literature.
Most prominently, there is a class of query algorithms that go
under the name of, Grover search, quantum search, or amplitude am-
plification / estimation, that all go back to Grover’s seminal work,4 4 Lov K. Grover. A framework for fast

quantum mechanical algorithms. In
Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing,
pages 53–62, 1998

who analyzed the following problem. Given a Boolean function
f : {0, 1}n → {0, 1}, find a c ∈ {0, 1}n such that f (c) = 1; or output
no solutions if such a c does not exist.

This can be seen as a version of (unstructured) database search
and classically a randomized algorithm will use Θ(n) classical
queries to f . Grover’s quantum algorithm uses Θ

(√
n
)

quantum
queries U f , a quadratic quantum speed-up. The Grover core routine
can also be used outside of the query complexity framework, e.g.,
for quadratically speeding up textbook classical algorithms for NP

problems. You will explore this in Exercise Sheet 3.
Whereas these Grover type algorithms are widely applicable,

academically pleasing, and are typically treated in textbooks, from
our perspective, they suffer from the following two weaknesses:

• It gives at most a quadratic classical-quantum speed-up, which
will only be helpful for very advanced quantum hardware —
for more primitive hardware the quantum advantage needs to
be at the very least super-quadratic to have any chance to be
practically witnessed. To put it bluntly, quadratic speed-ups are
not the reason people are excited to build quantum computers.

• It operates in the oracle setting and when one thinks about how
to implement the Grover oracle for applications, not even the
quadratic quantum advantage remains generic. One always
has to carefully compare to state-of-the-art specialized classical
methods for the problems at hand.

Given that we are mostly interested in large quantum computa-
tional complexity advantages for scientific computing, we thus
refrain from further treating Grover’s algorithm in this course.5 5 It is part of the concurrent RWTH lec-

tures Quantum Information in Physics.

4
Quantum Fourier transform

4.1 Discrete Fourier transform

In classical signal processing, the Fourier transform is ubiquitous.
Its discrete version, FN : CN → CN the discrete Fourier transform
(DFT), takes a complex vector (x0, · · · , xN) to a complex vector
(y0, · · · , yN) defined element wise as

yk =
1√
N

N−1

∑
j=0

xj exp
(

2πijk
N

)
. (4.1)

With the abbreviation ωN = exp (2πi/N) as the N-th root of unity,
the DFT has the matrix representation

(FN)j,k =
ω

jk
N√
N

, (4.2)

with which it can be checked that it is unitary. The DFT can be
computed in quasi-linear time with only O(N log N) steps by
means of the fast Fourier transform (FFT)1 — instead of the O(N2) 1 James W. Cooley and John W. Tukey.

An algorithm for the machine cal-
culation of complex Fourier series.
Mathematics of Computation, 19:297,
1965

that one might expect. This is highly useful for various applications
and, e.g., leads to a multiplication algorithm of two n bit numbers
with O(n log n log log n) classical gates.2 As the DFT is already uni-

2 A. Schönhage and V. Strassen.
Schnelle Multiplikation großer Zahlen.
Computing, 7:281, 1971

tary, is there a quantum algorithm to implement the DFT that uses
even fewer quantum gates?

4.2 Quantum circuit

In order to easily map the problem to n qubits, we set without loss
of generality N = 2n. The quantum Fourier transform (QFT) takes
n-qubit quantum states |x⟩ to the n-qubit quantum state FN |x⟩. The
dimension of the matrix FN is 2n × 2n, but what is the minimal
number of quantum gates to implement it in the quantum circuit
model?

We use the binary representation of integers k ∈ {0, · · · , 2n−1) as

k = k12n−1 + · · ·+ kn20 = (k1, · · · , kn) (4.3)

with the binary fraction notation

0.kl · · · km =
kl
2
+ · · ·+ km

2m−l+1 . (4.4)

30 quantum algorithms

Consider the following decomposition. For a computational basis
state |k⟩ = |k1 · · · kn⟩, we have

FN |k⟩

=
1√
2n

2n−1

∑
j=0

exp
(

2πijk
2n

)
|j⟩ (4.5)

=
1√
2n

1

∑
j1=0

· · ·
1

∑
jn=0

exp

(
2πik

(
n

∑
l=1

jl2−l

))
|j1⟩ ⊗ · · · |jn⟩ (4.6)

=
1√
2n ∑

j∈{0,1}n

n⊗
l=1

exp
(

2πikjl2−l
)
|jl⟩ (4.7)

=
n⊗

l=1

1√
2

(
|0⟩+ exp

(
2πik2−l

)
|1⟩
)

(4.8)

=
1√
2

(
|0⟩+ exp (2πi0.kn) |1⟩

)
(· · ·) 1√

2

(
|0⟩+ exp (2πi0.k1 · · · kn) |1⟩

)
.

(4.9)

In terms of controlled versions of the quantum gates

Rk =

(
1 0

0 exp
(

2πi2−k
)) (4.10)

this immediately suggest a quantum circuit as

|k1⟩ H R2 · Rn−1 Rn (n)

|k2⟩ • · H · Rn−2 Rn−1 · (n − 1)
...

...
...

...

|kn−1⟩ • • · H R2 (2)

|kn⟩ • • · • H (1)

with the corresponding output quantum states

(n) =
1√
2
(|0⟩+ exp (2πi0.k1 · · · kn) |1⟩) (4.11)

(n − 1) =
1√
2
(|0⟩+ exp (2πi0.k2 · · · kn) |1⟩) (4.12)

...

(2) =
1√
2
(|0⟩+ exp (2πi0.kn−1kn) |1⟩) (4.13)

(1) =
1√
2
(|0⟩+ exp (2πi0.kn) |1⟩) . (4.14)

Namely, the evolution of the input quantum state for the actions on
the first qubit is

|k⟩ = |k1 · · · kn⟩ 7→
1√
2
(|0⟩+ exp(2πi0.k1|1⟩)⊗ |k2 · · · kn⟩ (4.15)

7→ 1√
2
(|0⟩+ exp(2πi0.k1 · · · kn|1⟩)⊗ |k2 · · · kn⟩ ,

(4.16)

quantum fourier transform 31

and then going through all the other qubits as

1√
2n

(
|0⟩+ exp (2πi0.kn) |1⟩

)
⊗
(
· · ·
)
⊗
(
|0⟩+ exp (2πi0.k1 · · · kn) |1⟩

)
.

(4.17)

Finally, the additional swap gate circuit

(n) × · · · (1)
(n − 1) × · · · (2)

...
...

(2) × · · · (n − 1)
(1) × · · · (n)

will put the qubit states in the right order.
Now, what is the total number of elementary quantum gates in

this quantum circuit? In the first step, one Hadamard gate and
n − 1 conditional rotations are needed, in the second step one
Hadamard gate and n − 2 conditional rotations are needed etc.,
and hence this gives

n + (n − 1) + · · ·+ 1 =
n(n + 1)

2
(4.18)

many conditional rotations. Additionally, we have the n/2 swap
gates in the end (assuming n even). Each swap gate can be imple-
mented with three CNOT gates (cf. Exercise Sheet 3), each condi-
tional rotation with a CNOT gate and a constant number of elemen-
tary single qubit gates (cf. Exercise Sheet 4).

The quantum computational complexity of the QFT becomes
O(n2). Compare this to the O(n2n) classical gates of the FFT, an
exponential improvement!

Can the QFT be used to process classical signals exponen-
tially faster? Unfortunately, the answer is no, as the QFT does
not solve the same end-to-end problem as the DFT does. Namely,
the DFT takes as the input the classical description of a vector
(x0, · · · , xN) and outputs the classical of the Fourier transformed
vector (y0, · · · , yN). In contrast, the QFT starts with a quantum
state, whose amplitudes are given by some coefficients, that are
subsequently Fourier transformed. As such, there are at least two
problems:

• How are the amplitudes of the original quantum state loaded?

• How are the Fourier transformed amplitudes of the final state
read out?

In fact, the complexity of the QFT to perform the DFT task is not
better than the classical FFT. However, the qualitatively different
task of the QFT can be successfully employed in different contexts.
For example, in the next section, we sketch how QFT is the quan-
tum core routine of Shor’s integer factorization algorithm.

32 quantum algorithms

4.3 Remarks on period finding and Shor’s algorithm

Can the QFT be used to solve a classical end-to-end problem faster
than with known classical methods? The answer is yes, and one
core problem for which the QFT can be applied is period finding.

Given a function f : N → {0, · · · , N − 1} with the promise that
for some unknown period c ∈ {0, · · · , N − 1} we have for all x, y
that

f (x) = f (y) ⇔ x = y mod c , (4.19)

determine c. Notice the similarity with Simon’s problem from Sec-
tion 3.4! For period finding, one can show the classical probabilistic
query complexity lower bound Ω(N1/3 (log N)−1/2), while in the
quantum setting the period c can be determined with O (log log N)

queries with the quantum circuit

|0⟩ H

U f

FN
...

...
...

...

|0⟩ H

|0⟩

...
...

...

|0⟩

which features the QFT for all the O (log log N) runs. While similar
to the quantum circuit to resolve Simon’s problem from Section
3.4, you will explore in Exercise Sheet 4 how above quantum circuit
works in detail and why it solves the period finding problem.

Now, while for period finding, this is an exponential classical-
quantum separation, it is (at first) again only in a query complexity
setting and in order to say something about computational com-
plexity one would also need to implement the corresponding quan-
tum oracle U f . This of course heavily depends on the exact function
f at hand, but a series of efficient classical computational number-
theoretic reductions show that integer factorization can be solved
(with high probability) if the period of the modular exponentiation
function

fa(x) = ax mod N (4.20)

can be found for any fixed a ∈ {0, · · · , N − 1}. Luckily, there is
already an efficient classical algorithm to implement fa(x) for a ∈
{0, · · · , N − 1} with complexity O((log N)2 log log N log log log N).
Consequently, the reversible quantum oracle U fa can be imple-
mented in this complexity as well, and carefully putting together
all the steps one finds the overall complexity O

(
n2 log n log log n

)

quantum fourier transform 33

for integer factorization of n-bit integers.3 This is improved by us- 3 Peter W. Shor. Polynomial-time
algorithms for prime factorization
and discrete logarithms on a quantum
computer. SIAM Review, 41(2):303,
1999

ing the state-of-the-art multiplication scheme from4 to the claimed

4 David Harvey and Joris van der
Hoeven. Integer multiplication in time
O(nlog n). Annals of Mathematics, 193

(2):563, 2021

O
(
n2 log n

)
.

This then gives an end-to-end problem with quantum compu-
tational complexity super-polynomial better than the best known
classical algorithm. This finding is really exciting and kick started
the field of quantum computing as a broad research area. There are
also varies related problems to integer factorization — aka the hid-
den subgroup problem — for which one can employ similar ideas to
find super-polynomial classical-quantum speed-ups. We note that
for all these problems, symmetries are of utmost importance to allow
for quantum algorithms to provide large speed-ups.

Besides challenging the extended Church-Turing, Shor’s efficient
quantum algorithm for integer factorization has also gained popu-
larity as the security of a widespread public key cryptosystem, the
Rivest–Shamir–Adleman (RSA) scheme, relies on the hardness of
the integer factorization problem.

However, as integer factorization and more generally computa-
tional number theory are otherwise not necessarily of broad interest
for scientific computing, we will skip any details on the proof of
Shor’s algorithm5 and rather focus on other more generic appli- 5 These proof details will be part of the

concurrent RWTH lecture Quanten-
Computing Quantum Information in
Physics.

cations of quantum algorithms. In the next chapter, we explore
another use of the QFT, for the task of phase estimation, which can
indeed be more broadly employed for scientific computing.

5
Quantum phase estimation

5.1 Problem setting

We are given a unitary matrix U of size 2m × 2m and a accompany-
ing normalized eigenvector u⃗ with eigenvalue parametrized as

U · u⃗ = exp(2πiϕ) · u⃗ with ϕ ∈ [0, 1], (5.1)

due to the unitarity of U. We assume that we can prepare the cor-
responding quantum state |u⟩ = V(u)|0⊗m⟩ = by means of an
m-qubit quantum circuit V(u), and can run controlled versions of
the corresponding quantum gates U2j

with j = 1, · · · , n for some
n ∈ N as

•

U2j

The goal of quantum phase estimation is to determine an n−bit
number that is, up to a failure probability ε ∈ (0, 1] equal to the
best n−bit approximation ϕ(n) of the phase ϕ of the eigenvalue
exp(2πiϕ).

At first sight, it is noteworthy that there are a lot of assump-
tions here: Not only do we have some m-qubit quantum gate
V(u)|0⊗m⟩ = |u⟩ for preparing the relevant eigenvector, but we
also have access to a black-box quantum gate implementation of the
controlled version of U and its higher powers. For the latter, it is
possible to, e.g., implement via U4 = U · U · U · U, but this might in
general become prohibitively expensive once we are not only inter-
ested in the number of queries to U, but also in the computational
cost of implementing U and its higher powers. Notwithstanding
these caveats (that we will examine in more detail in Section 5.3),
we will see in Chapter 7 that the task of phase estimation as above
is a basic subroutine often used in quantum algorithms for scientific
computing.

36 quantum algorithms

5.2 Quantum circuit

We first treat the special case that the phase ϕ can be exactly written
as an n−bit string, i.e.,

ϕ = ϕ(n) = 0.ϕ1 · · · ϕn =
ϕ1

2
+ · · ·+ ϕn

2n , (5.2)

recalling the the binary fraction notation. Then, the following n + m
qubit quantum circuit featuring the QFT can be employed1 1 Apart from the query complexity to

U, we have seen in the previous Chap-
ter 4 that the QFT can be implemented
in complexity O(n2).

|0⟩ H · · · •

F−1
2n

...
...

...

|0⟩ H • · · ·

|0⟩ H • · · ·

|0⊗m⟩ V(u) U20
U21 · · · U2n−1

Namely, the evolution of the input quantum state for all the steps
before the QFT is

|0⊗(n+m)⟩

7→ 1√
2n

2n−1

∑
j=0

|j⟩ ⊗ |u⟩ (5.3)

7→ 1√
2n

2n−1

∑
j=0

|j⟩ ⊗ U j|u⟩ (5.4)

=
1√
2n

2n−1

∑
j=0

exp(2πijϕ)|j⟩ ⊗ |u⟩ (5.5)

=
1√
2n

(
|0⟩+ exp(2πi2n−1ϕ)|1⟩

)
(· · ·)

(
|0⟩+ exp(2πi20ϕ)|1⟩

)
⊗ |u⟩ ,

(5.6)

where we repeatedly applied the controlled-U2j
quantum gates for

j = 1, · · · , 2n − 1 in the second step, and the last inequality is via
the binary representation j = j12n−1 + · · ·+ jn20.

Now, for the assumed exact ϕ = 0.ϕ1 · · · ϕn, the quantum state on
the first n-qubits just becomes

1√
2n

(|0⟩+ exp(2πi0.ϕn)|1⟩) (· · ·) (|0⟩+ exp(2πi0.ϕ1 · · · ϕn)|1⟩) .

(5.7)

Subsequently applying the inverse QFT on these first n-qubits, and
measuring then leads — by the QFT identity in Eq. (4.9) — to the
n-bit string (ϕ1, · · · , ϕn). The corresponding binary fraction

0.ϕ1 · · · ϕn =
ϕ1

21 + · · ·+ ϕn

2n (5.8)

quantum phase estimation 37

is exactly equal to the sought after n-bit approximation ϕ(n)! The
complexity stays efficient as the QFT is implemented with only
O(n2) quantum gates.

For the general case when ϕ ̸= ϕ(n), and a failure probability
upper bounded by ε ∈ (0, 1], we can choose

n′ = n +

⌈
log
(

2 +
1
2ε

)⌉
> n (5.9)

many qubits instead of the n-qubits on the QFT registers. After the
corresponding measurements, the consecutive binary fraction

0.ϕ1 · · · ϕn′ =
ϕ1

21 + · · ·+ ϕn′

2n′ ≡ ϕ (5.10)

can then be shown to determine the best n−bit approximation ϕ(n)
of the phase ϕ with probability 1 − ε. The argument gets a bit subtle
for technical reasons and you will explore a simplified analysis in
Exercise Sheet 5.

5.3 Variations and caveats

Quantum phase estimation on its own is still a query complexity
algorithm, as the implementation of U, or better the controlled ver-
sion of its powers, is not specified in terms of complexity. Nonethe-
less, will be useful for resolving the energy levels of Hamiltonians
of quantum many body systems, as we will explore in some details
in Chapters 6 and 7.

In the following, we address and relax some of the assumptions
that went into the quantum phase estimation algorithm:

• In order to achieve an n-bit accurate approximation of the rele-
vant phase, one needs to implement the controlled U operations
up to U2n−1

. A priori this is then exponentially expensive in n
if one only has a black box implementation of U at hand. How-
ever, if more about the quantum circuit implementation of U is
known, this can be avoided for certain structures.

• What happens if one does not have to ability to exactly prepare
the relevant eigenstate |u⟩, but rather can only prepare some
other state |ψ⟩? Writing |ψ⟩ = ∑v αv|v⟩ as a superposition in
terms of the eigenstates of U (they constitute an orthonormal ba-
sis of the whole space), the quantum phase estimation algorithm
will output an estimation of the corresponding phases ϕv with
probability |αv|2 each. If we have some a priori estimation on U,
this might still be useful. You will explore this setting more in
Exercise Sheet 5.

• The number of ancilla qubits on top of the n-qubits needed to rep-
resent the unitary matrix U, scales linearly with the number of
bits of precision required. In practice, this can be prohibitively
expensive. Moreover, the QFT is in practice also relatively com-
plex in terms of quantum gate costs and somewhat lacking noise

38 quantum algorithms

Figure 5.1: Schematic depiction of
work in our group: Randomized phase
estimation algorithm that avoids the
use of the QFT, and only employs one
ancilla qubit — thereby minimizing
the overall quantum resource costs
(at the cost of some classical pre- and
post-processing).resilience. Luckily, there are other, modern versions of quantum

phase estimation, that avoid the use of the QFT,2 and end-to- 2 Lin Lin and Yu Tong. Heisenberg-
limited ground-state energy estimation
for early fault-tolerant quantum
computers. PRX Quantum, 3:010318,
2022

end only require one ancilla qubit.3 Some versions also make

3 Kianna Wan, Mario Berta, and Earl T.
Campbell. Randomized quantum algo-
rithm for statistical phase estimation.
Physical Review Letters, 129:030503, 2022

extensive use of classical signal processing methods.4

4 Thomas E. O’Brien, Brian Tarasinsk,
and Barbara M. Terhal. Quantum
phase estimation of multiple eigen-
values for small-scale (noisy) exper-
iments. New Journal of Physics, 21:
023022, 2019

In the next chapter, we discuss specific unitary matrices that are
of the form U = exp(iHt), with H Hermitian given by a physical
Hamiltonian, and how to implement them efficiently.

6
Hamiltonian simulation

6.1 Task

Intuitively, we might expect that quantum computers are particu-
larly good (efficient) at simulating physical systems described by
quantum mechanics, and indeed that was one of the earliest pro-
posals for quantum computers.1 This could concern static proper- 1 Richard P. Feynman. Simulating

physics with computers. International
Journal of Theoretical Physics, 21:467,
1981

ties such as resolving energy levels of quantum mechanical systems
(e.g., of molecules) or dynamic properties, i.e., how the systems
evolves in time. The latter is the task of Hamiltonian simulation.
Without going into any of the details on the physics, the mathemat-
ical description is as follows.

Given an initial n-qubit state |ψ⟩ together with an n-qubit Hermi-
tian matrix H = H†, that describes a quantum mechanical system,
the task of Hamiltonian simulation is to (approximately) create the
time evolved quantum state

|ψ(t)⟩ = exp(−iHt)|ψ⟩ for t > 0. (6.1)

The goal is thereby to achieve this with as few quantum gates as
possible.

Here, the matrix exponential is defined either via the spectral
decomposition of the Hermitian matrix H, or even more directly via
the Taylor series

exp(−iHt) =
∞

∑
k=0

(−iHt)k

k!
= 1 − iHt +

(Ht)2

2
+ · · · . (6.2)

Note that U(t) = exp(−iHt) indeed becomes a unitary matrix

U(t)U†(t) = exp(−iHt)(exp(−iHt))† = 1 , (6.3)

and as such can be implemented in the quantum circuit model. In
general, this will require O(n · 4n) many elementary gates, but
whenever the Hamiltonian H has some particular structure —
which comes from physics or chemistry — the ambition is to find
quantum circuits with only poly(n) many quantum gates.

40 quantum algorithms

In order to achieve this, we have to resort to some approximate no-
tion of Hamiltonian simulation, where we implement some unitary
matrix U(t) with uniformly, for all t

∥U(t)− U(t)∥∞ ≤ ε for ε ∈ [0, 1]. (6.4)

Recall from around Eq. (2.12) that the infinity norm is defined as

∥O∥∞ = sup
|ψ⟩

∥O|ψ⟩∥2 for quantum states |ψ⟩, (6.5)

and hence gives the strongest possible notion of approximation.
In Exercise Sheet 6, you will prove that for sequences of unitary
matrices {Ui}i∈I and {Ui}i∈I , we have:

∥Ui − Ui∥∞ ≤ ε ∀i ∈ I ⇒
∥∥∥∥∥∏i∈I

Ui − ∏
i∈I

Ui

∥∥∥∥∥
∞

≤ |I|ε . (6.6)

That is, the error propagation with respect to the infinity norm is
well-behaved as well. Now, the goal is for a given triple (H, t, ε), to
find the shortest quantum gate implementation that approximates
the unitary U(t) = exp(−iHt). As remarked above, the complexity
of this crucially depends on the (physical) structure of the Hamilto-
nian H.2 2 The following content is inspired

and partly adapted from the lecture
notes Quantum Computation, Ashley
Montanaro (linked in Section 1).

In general, quantum physical systems with Hamiltonians H first
have to be mapped to qubits, i.e., to a complex matrix of dimension
2n × 2n, and we will discuss such mappings in the forthcoming
Chapter 7. However, some Hamiltonians already have the correct
form by default. To state some examples, it is convenient to work in
the Pauli basis of the n-qubit space C2n × C2n

, given as

{X, Y, Z,1}⊗n . (6.7)

So, an example element is of the form

Z1 ⊗ X2 ⊗ · · · ⊗ 1n−1 ⊗ Yn , (6.8)

and you will explore this more in Exercise Sheet 6. Examples of
Hamiltonians of interest in qubit form are then as follows.

Example 14. The Heisenberg chain on a one-dimensional line is described
by the Hamiltonian

HHeisenberg = ∑
j∈J

(
Cx · Xj ⊗ Xj+1 + Cy · Yj ⊗ Yj+1 + Cz · Zj ⊗ Zj+1

)
,

(6.9)

where Cx, Cy, Cz denote constants and we used the shorthand notation

Xj ⊗ Xj+1 ≡ 11 ⊗ · · · ⊗ 1j−1 ⊗ Xj ⊗ Xj+1 ⊗ 1j+2 ⊗ · · · ⊗ 1n (6.10)

and similar. Crucially, |J| = poly(n), i.e., the number of non-zero Pauli
terms only scales polynomial — whereas the Hamiltonian matrix H is of
size exponential in n.

hamiltonian simulation 41

Example 15. The Ising model on a two-dimensional square lattice is
described by the Hamiltonian

HIsing = C ·
(

∑
j∈J

Zi,j ⊗ Zi+1,j + Zi,j ⊗ Zi,j+1

)
, (6.11)

where again |J| = poly(n), and we use the same notation as in the
previous example.

There are two important take-away messages here: First, physical
n-qubit Hamiltonian matrices H can typically be written with only
poly(n) many Pauli terms. Second, all these Pauli terms only act
non-trivial in a local neighborhood of size k each, e.g, in the above
examples only on next neighbors k = 2.3 These two factors taken 3 Note that sufficient locality also

automatically implies some sparsity.together reflect the fact that interactions in physics are local. As
we will see, this is exactly what makes quantum physical systems
amenable to simulation by the quantum circuit model. As such, this
then gives a first mathematical justification for the intuition that
quantum computers are particularly good at simulating physics.

6.2 Commuting case

Let’s now make things mathematically precise. How can one actu-
ally implement the sought-after unitary matrix exp(−iHt) for

H = ∑
j∈J

β jPj for Pj ∈ {X, Y, Z,1}⊗n and β j ∈ R, β = max
j∈J

∣∣β j
∣∣ (6.12)

in terms of elementary quantum gates? Unfortunately, on the ma-
trix level, in general for decompositions into H = H1 + H2, we
have

exp(H) ̸= exp(H1) exp(H2) , (6.13)

unless [H1, H2] = H1H2 − H2H1 = 0. This prevents a direct simpli-
fication of exp(−it ∑j∈J β jPj) in terms of its Pauli components, and
you will verify this in Exercise Sheet 6.

Nevertheless, let’s first analyze the simple special case that all
terms {Pj}j∈J pairwise commute.4 Then, we have 4 These are also called commuting

Hamiltonians.

exp

(
−it ∑

j∈J
β jPj

)
= ∏

j∈J
exp

(
−itβ jPj

)
(6.14)

and the quantum circuit representation problem reduces to imple-
menting one n-qubit term exp(−itβ jPj) with Pj ∈ {X, Y, Z,1}⊗n.
Diagonalizing the Pauli matrices on each qubit with single qubit
unitaries Ul and using that the eigenvalues are all ±1, we can write

exp
(
−itβ jPj

)
=

 kj⊗
l=1

Ul exp
(
−itβ jZ

⊗kj
) kj⊗

l=1

U†
l

⊗ 1n−kj
, (6.15)

which only acts non-trivially on a number k j ≤ n of the qubits.

The remaining unitary matrix exp
(
−itβ jZ

⊗kj
)

adds a global phase

42 quantum algorithms

exp(±itβ j), depending on the input state |x1 · · · xkj
⟩ having even

or odd parity ∑
kj
l=1 xl . To implement this, we can use the following

quantum circuit, depicted for the simple case k j = 3:

• •

• •

exp(−itβ jZ)

The straightforward generalization to larger k j ∈ N just has
more layers of CNOT gates. That is, overall the one n-qubit matrix
exp

(
−itβ jPj

)
is implemented with at most O(n) elementary gates.

Together with Eq. (6.14) this leads to a total of O(|J|n) elementary
gates for the commuting case, which is polynomial in n, as long as
the number of terms is |J| = poly(n).

Can we reproduce the same scaling for the general case with
non-commuting terms [Pj1 , Pj2] ̸= 0 despite Eq. (6.13)?

6.3 Trotter based methods

The first simple idea is to anyway use the same product formula5 5 Seth Lloyd. Universal quantum
simulators. Science, 273:1073, 1996

∏
j∈J

exp
(
−itβ jPj

)
(6.16)

in the hope that it stills reasonable approximates exp (−itH) in the
non-commuting case. One intuition for this is that all the Pj’s only
act non-trivially in a neighborhood of constant size k each (k = 2 in
above examples), and as such the commutator norms ∥[Pj1 , Pj2]∥∞

should only scale with the constant k instead of the system size n.
Consequently, we might hope that this near-commutation leads to a
good approximation.6 6 In the following, we will not quan-

titatively make use of this but rather
employ simplified methods.

We resort to the Lie-Trotter expansion

exp(H1 + H2) = lim
p→∞

(
exp

(
H1

p

)
exp

(
H2

p

))p
, (6.17)

and similar multipartite versions thereof. While these are asymp-
totic formulae, we might take a finite p ∈ N and try to bound the
difference∥∥∥∥∥ exp(H1 + H2)− exp

(H1

p

)
exp

(H2

p

)
(· · ·) exp

(H1

p

)
exp

(H2

p

)
︸ ︷︷ ︸

p times

∥∥∥∥∥
∞

.

(6.18)

In particular, for p = 1 this again reduces to the commuting Ansatz.
Now, the remainder of this section is spent on making these ideas
rigorous and to indeed determine the quantitative scaling.

We start with a bipartite decomposition H = H1 + H2 under the
boundedness conditions ∥H1∥∞, ∥H2∥∞ ≤ γ ∈ (0, 1). The first order

hamiltonian simulation 43

Taylor expansion

exp(H) = 1 + H + ∑
k≥2

Hk

k!
(6.19)

gives the estimate

exp(H1) exp(H2) = exp(H1 + H2) + E12 with ∥E12∥∞ ≤ O(γ2),
(6.20)

via the choice

E12 = H1H2 + ∑
k≥2

(1 + H1)Hk
2 + Hk

1(1 + H2)− (H1 + H2)
k

k!

+ ∑
k,k′≥2

Hk
1 Hk′

2
k!k′!

. (6.21)

Iteratively applying this for the multipartite case under the
boundedness conditions ∥Hj∥∞ ≤ γ ∀j ∈ J gives

∏
j∈J

exp(Hj) = exp

(
∑
j∈J

Hj

)
+ EJ with ∥EJ∥∞ ≤ O

(
|J|3γ2

)
. (6.22)

This follows as we have, e.g., for |J| = 4, the steps

exp(H1) exp(H2) exp(H3) exp(H4)

=
(

exp(H1 + H2) + E12

)
exp(H3) exp(H4) (6.23)

=
(

exp(H1 + H2 + H3) + E123

)
exp(H4)

+ E12 exp(H3) exp(H4) (6.24)

= exp(H1 + H2 + H3 + H4)

+ E1234 + E123 exp(H4) + E12 exp(H3) exp(H4)︸ ︷︷ ︸
=E4

, (6.25)

with the corresponding bound

∥E4∥∞ ≤ ∥E1234∥∞ + ∥E123 exp(H4)∥∞ + ∥E12 exp(H3) exp(H4)∥∞

(6.26)

≤ (4 − 1)2 · O(γ2) + (4 − 2)2 · O(γ2) · O(1) + O(γ2) · O(1)
(6.27)

≤ 4(4 − 1)2 · O(γ2) ≤ 43 · O(γ2) . (6.28)

So, as long as ∥Hj∥∞ ≤ γ ∀j ∈ J for γ ∈ (0, 1), the first order Trotter
expansion gives an approximation∥∥∥∥∥∏j∈J

exp(Hj)− exp

(
∑
j∈J

Hj

)∥∥∥∥∥
∞

≤ O
(
|J|3γ2

)
. (6.29)

To employ this, we first write for some r ∈ N (to be chosen later)

U(t) = exp(−itH) =

(
exp

(−itH
r

)
︸ ︷︷ ︸

=U(t/r)

)r

=

(
exp

(
∑
j∈J

−itβ j

r
Pj︸ ︷︷ ︸

=Hj(t/r)

))r

,

(6.30)

44 quantum algorithms

and then Eq. (6.29) applied for each U(t/r) gives the approximation∥∥∥∥∥U(t/r)− ∏
j∈J

exp(Hj(t/r))︸ ︷︷ ︸
=U(t/r)

∥∥∥∥∥
∞

≤ ∥E|J|∥∞ ≤ O

(
|J|3

(
tβ

r

)2
)

.

(6.31)

By the error propagation bound from Eq. (6.6), this leads to∥∥U(t/r)r − U(t/r)r∥∥
∞ ≤ O

(
|J|3 t2β2

r

)
, (6.32)

and hence there exists a constant C such that∥∥∥∥∥exp(−itH)−
(

∏
j∈J

exp
(−itβ j

r
Pj

))r∥∥∥∥∥
∞

≤ C · |J|3 t2β2

r
. (6.33)

Choosing

r =
⌈

C|J|3t2β2

ε

⌉
for some ε > 0 (6.34)

leads to a first order Trotter scheme with total quantum gate com-
plexity O

(
|J|4β2t2ε−1) for an ε-good approximation.

Typically, for the number of terms |J| = poly(n) and for the con-
stants β = O(1), and as such the quantum gate complexity for im-

plementing exp
(
−it ∑j∈J β jPj

)
up to approximation ε > 0 in infin-

ity norm becomes

O
(

poly(n)t2ε−1
)

. (6.35)

Using the higher p-th order version of the Lie-Trotter expansion in
Eq. (6.17), one can asymptotically improve this to

O
(

poly(n)t1+1/pε−1/p
)

. (6.36)

Finally, much of modern research on the topic goes into speci-
fying and optimizing the exact poly(n) dependence as well as the
hidden constants in the big O-notation. This heavily depends on
the structure of the {β j, Pj}j∈J in the Hamiltonian — or more pre-
cisely on the scaling of the commutator norms ∥[Pj1 , Pj2]∥∞ — and
makes all the difference when it comes to actual implementations.
Note that our argument above actually did not make use of the in-
tuition that ∥[Pj1 , Pj2]∥∞ should only scale with the locality k instead
of n, but this can be worked out.7 7 Andrew M. Childs, Yuan Su, Minh C.

Tran, Nathan Wiebe, and Shuchen
Zhu. Theory of Trotter error with
commutator scaling. Physical Review X,
11:011020, 2021

While Trotter based methods do not use any ancilla qubits
(which is nice!), and in practice actually even scale much better
than what can be proven in terms of worst case performance guar-
antees, the dependence on the approximation error ε is inverse
polynomial. In the next section, we sketch some more involved,
modern techniques, that improve that dependence on ε to poly-
logarithmic.

hamiltonian simulation 45

6.4 Linear combination of unitary based methods

The basic idea is to implement with a quantum circuit an appropri-
ately truncated Taylor series of the exponential function

exp

(
−it ∑

j∈J
β jPj

)
= ∑

k≥0

(it)k

k!

(
∑
j∈J

β jPj

)k

(6.37)

= ∑
k≥0

∑
(j1···jk)∈Jk

tkβ j1 · · · β jk
k!

· ikPj1 · · · Pjk (6.38)

You will show in Exercise Sheet 7, that truncating at

k = O
(

t + log
(

ε−1
))

(6.39)

already leads to an ε-approximation in infinity norm. Crucially,
since k only depends poly-logarithmic on ε, this then leads to
the improved Hamiltonian simulation complexity in t (details to
come).8 8 Dominic W. Berry, Andrew M.

Childs, Richard Cleve, Robin Kothari,
and Rolando D. Somma. Simulating
Hamiltonian dynamics with a trun-
cated Taylor series. Physical Review
Letters, 114:090502, 2015

Consequently, it would be sufficient to implement with a quan-
tum circuit the action of a linear combination of unitaries

P = ∑
l∈L

αl Pl with αl ∈ R and Pl ∈ {X, Y, Z,1}⊗n (6.40)

on a quantum state as |ψ⟩ 7→ P|ψ⟩ · ∥P|ψ⟩∥−1
2 . However, a linear

combination of unitary matrices is in general not a unitary matrix
anymore and thus it is a priori unclear how to implement that with
a quantum circuit!

The so-called linear combination of unitaries (LCU) technique
solves that problem in a probabilistic fashion, and with the intro-
duction of ⌈log |L|⌉ many ancilla qubits. Whereas the basic idea
of a truncated Taylor series as mentioned above is conceptually
simple, the actual details of this method get a bit technical. Never-
theless, in the following, we sketch the main ideas in order to give
you a glimpse into modern techniques for the fundamental task of
Hamiltonian simulation.9 9 The following content is inspired and

partly adapted from the lecture notes
Quantum Computing, Ronald de Wolf
(linked in Section 1).

To implement the LCU in Eq. (6.40) on an n-qubit quantum state
|ψ⟩, the basic steps are:

1. Prepare |ψin⟩ = |0⊗⌈log |L|⌉⟩ ⊗ |ψ⟩ on ⌈log |L|⌉+ n qubits.

2. Apply the ⌈log |L|⌉-qubit unitary

V : |0⊗⌈log |L|⌉⟩ 7→ ∑
l∈L

√
αl

∥⃗α∥1
|l⟩ with α⃗ = (α1, · · · , αL), (6.41)

and ∥⃗α∥1 = ∑l∈L |αl | on the ancilla qubits.

3. Apply the unitary

W = ∑
l∈L

|l⟩⟨l| ⊗ Pl (6.42)

on the whole system, where the ancilla registers |l⟩⟨l| select what
Pl is applied on the main register.

46 quantum algorithms

4. Apply the inverse unitary V† on the ancilla qubits.

It is then straightforward to verify (as you will do in Exercise Sheet
7) that the final state takes the form

|ψout⟩ =
∥P|ψ⟩∥2

∥⃗α∥1︸ ︷︷ ︸
=
√pgood

|0⊗⌈log |L|⌉⟩ ⊗ P|ψ⟩
∥P|ψ⟩∥2︸ ︷︷ ︸

=|ψgood⟩

+

√
1 −

∥P|ψ⟩∥2
2

∥⃗α∥2
1︸ ︷︷ ︸

=
√

pbad

|⊥⟩︸︷︷︸
=|ψbad⟩

,

(6.43)

where |⊥⟩ denotes some ⌈log |L|⌉+ n qubit state with the orthogo-
nality constraint(

|0⊗⌈log |L|⌉⟩⟨0⊗⌈log |L|⌉| ⊗ 1n

)
|⊥⟩ = 0 . (6.44)

Now, measuring the first ⌈log |L|⌉ qubits, and conditioned on the
all zero measurement outcome 0 · · · 0, the post-measurement state
on the other n qubits is P|ψ⟩ · ∥P|ψ⟩∥−1

2 as required!
However, unfortunately, we only have the probability

pgood =
∥P|ψ⟩∥2

2
∥⃗α∥2

1
(6.45)

of this actually happening. Luckily, the success probability of the
scheme can be boosted to close to one by employing quantum am-
plitude amplification. This additional routine repeats all four algo-
rithmic steps above O

(
1/√pgood

)
many times (together with few

other elementary quantum gates), such that the resulting output
|ψ′

out⟩ has overlap close to one with |ψgood⟩. This can be seen as a
quantum variant of Grover’s algorithm, called amplitude amplifica-
tion (as touched upon in Section 3.5). You will work out this step in
detail in Exercise Sheet 7.

So, overall we just need to run steps 1–4 above

O
(
∥⃗α∥1∥P|ψ⟩∥−1

2

)
≈ O (∥⃗α∥1) many times, (6.46)

where for the approximation ∥P|ψ⟩∥2 ≈ 1.10 10 There are a couple of subtleties
glanced over here. Firstly, the above
scheme will also require to prepare the
n-qubit input state |ψ⟩ n-times (even
though strictly speaking the task of
Hamiltonian simulation only asks for
one copy of |ψ⟩). This can be rectified
by using the more advanced oblivious
amplitude amplification. Secondly,
amplitude amplification a priori
only works if P is unitary, which it
is not exactly. Nevertheless, in the
variant robust amplitude amplification,
this is controlled by exploiting how
close P is to unitary (via quantifying
∥P|ψ⟩∥2 ≈ 1).

It remains to analyze what the complexities of implementing the
unitaries V, W from Eqs. (6.41)–(6.42) are:

• The latter unitary W is of the form W = ∑l∈L |l⟩⟨l| ⊗ Pl and
corresponds to applying controlled versions of the n-qubit Pauli
operators Pl , of which there are |L| many.

• The former unitary V corresponds to coherent data loading of the
real coefficients α⃗ = (α1, · · · , αL). The cost of implementing this
is typically smaller than the dominating cost of implementing
W and as such we neglect the contribution in our asymptotic
complexity analysis. We will revisit the topic in Chapter 9 on
quantum random access memory (QRAM).

hamiltonian simulation 47

Going back to the original Hamiltonian simulation problem from
Eq. (6.37), we approximate in infinity norm

exp

(
−it ∑

j∈J
β jPj

)
≈ε

O(t+log ε−1)

∑
k=0

∑
(j1···jk)∈Jk

tkβ j1 · · · β jk
k!︸ ︷︷ ︸

=αjk

· ikPj1 · · · Pjk︸ ︷︷ ︸
=P′

j1
···P′

jk

,

(6.47)

for which the number of rounds from Eq. (6.46) is upper bounded
by

∥⃗α∥1 =

O(t+log ε−1)

∑
k=0

tk

k! ∑
(j1···jk)∈Jk

β j1 · · · β jk (6.48)

≤ ∑
k≥0

(
t∥β⃗∥1

)k

k!
(6.49)

= exp
(

t∥β⃗∥1

)
, (6.50)

where β⃗ = (β1, · · · , β|J|). Due to the exponential dependence on the
time t, this is not quite good enough yet.

However, like for Trotter based methods, we can reduce to small
times via the identity

(exp(−isH))p = exp(−ispH) . (6.51)

So, instead, we run the LCU Hamiltonian simulation p = t∥β⃗∥1

many times, with each

time s = ∥β⃗∥−1
1 and error ε = ε · t−1∥β⃗∥−1

1 . (6.52)

Now, for each of these runs, the number of iterations of the algo-

rithmic steps 1–4 is O
(

exp
(

s∥β⃗∥1

))
= O(1) and these steps are

then dominated by the cost of implementing the corresponding W
from step 3. That is, one needs controlled versions of the P′

j1
· · · P′

jk
from Eq. (6.47), with k up to

O
(

s + log ε−1
)
= O

(
log
(

t∥β⃗∥1ε−1
))

. (6.53)

In terms of elementary gates, this can be decomposed into

O
(
|J|(n + log |J|) log

(
t∥β⃗∥1ε−1

))
steps, (6.54)

but we forgo the somewhat lengthy argument.11 Finally, the total 11 Dominic W. Berry, Andrew M.
Childs, Richard Cleve, Robin Kothari,
and Rolando D. Somma. Simulating
Hamiltonian dynamics with a trun-
cated Taylor series. Physical Review
Letters, 114:090502, 2015

cost of doing this p = t∥β⃗∥1 times becomes

O
(

t∥β⃗∥1|J|(n + log |J|) log
(

t∥β⃗∥1ε−1
))

. (6.55)

As ∥β⃗∥1 = O(|J|), we conclude:

48 quantum algorithms

The complexity for implementing exp
(
−it ∑j∈J β jPj

)
up to approx-

imation error ε > 0 in infinity norm roughly becomes

O
(
|J|2(n + log |J|)︸ ︷︷ ︸

=poly(n)

t log
(
|J|tε−1

))
, (6.56)

i.e., quasi-linear dependence on time t and logarithmic dependence
on inverse approximation error ε. In terms of asymptotic complex-
ities this is a big improvement compared to the p-th order Trotter
method with

O
(

poly(n)t1+1/pε−1/p
)

. (6.57)

However, the LCU method comes with generally more demanding
quantum circuits (in practice), and at the cost of roughly

O
(

log (|J|) log
(
|J|tε−1

))
(6.58)

ancilla qubits.

6.5 State-of-the-art methods and caveats

There are a multitude of conceptually different quantum algorithms
for performing Hamiltonian simulation, each with their advantages
and disadvantages. For early fault-tolerant quantum devices, Trot-
ter based methods might be the most promising because they do
not use any ancilla qubits and they also perform much better in
typical use cases than what can be proven in terms of worst case
performance guarantees. Another promising candidate for non-
sparse Hamiltonians are randomized schemes, termed qDRIFT12. 12 Earl Campbell. Random compiler for

fast Hamiltonian simulation. Physical
Review Letters, 123:070503, 2019

On the other end of the spectrum, are the most recent methods
based on quantum signal processing, that we will touch on in the
last Chapter 10. Here, the query complexity to a block encoding of
the Hamiltonian is13 13 András Gilyén, Yuan Su, Guang Hao

Low, and Nathan Wiebe. Quantum
singular value transformation and
beyond: Exponential improvements
for quantum matrix arithmetics. In
Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Com-
puting, STOC 2019, page 193, 2019

O

|J|t + log ε−1

log
(

e + log ε−1

|J|t

)
 , (6.59)

which is also known to be optimal in terms of asymptotic com-
plexities. However, for this one does first need to create the block
encoding query oracle from the Hamiltonian given in Pauli form,
which leads to some additional overhead in the end-to-end gate
complexity. We discuss the construction of such block encodings in
Chapter 10, which sometimes also makes use of quantum random
access memories (Chapter 9).

How does Hamiltonian simulation with quantum algorithms
compare to classical methods? At first sight, quantum schemes are
very efficient as they solely use O(log N) qubits and O (log N) gates
to time evolve exponentially large n-qubit states. In comparison,

hamiltonian simulation 49

classical (textbook) methods need O (2n) bits to keep track of the
quantum state. However, this comparison should be treated cau-
tiously:

• The classical schemes achieve something much stronger, as they
give a full classical description of the evolved quantum state
|ψ⟩. That is, one can then read off any desired feature of the
system. In contrast, quantum Hamiltonian simulation just gives
a quantum description of the quantum state |ψ⟩, i.e., the state
sits in a quantum memory. What to further do with that? For
example, reading out some observable up to precision δ > 0,
will require at least Ω

(
δ−1) many copies to be measured, and as

such the quantum experiment would have to be repeated many
times. Let alone resolving a full classical description of the state,
which would again need O (2n) copies!

• Specialized modern classical methods have nowhere near O (2n)

complexity, but in practice rather also often (quasi) scale poly-
nomial in n. This is, however, not rigorous, comes with severe
scaling constraints for larger instance sizes, and much depends
on the exact system in question (e.g., in computational chemistry,
condensed matter physics, etc.).

In the next chapter, we combine Hamiltonian simulation with
quantum phase estimation to resolve the energy spectrum of
Hamiltonians.

7
Ground state energy estimation

7.1 Task

While we studied the simulation of dynamical properties of quan-
tum mechanical systems in the last chapter, we are now interested
in static properties of such systems. In physics, the eigenvalues of the
Hamiltonian corresponds to the energy levels of the system. While
the whole spectrum is of interest, most of the systems found in na-
ture are (approximately) in their ground state, and as such the low
energy spectrum and in particular the minimal eigenvalue of the
Hamiltonian λ0(H) is of fundamental interest. The local Hamilto-
nian problem is then as follows.1 1 Note that even though the Hamilto-

nian matrix is of size 2n, for constant k
the problem description itself is of size
poly(n).Given an n-qubit Hamiltonian of the form

H = ∑
j∈J

β jPj for Pj ∈ {X, Y, Z,1}⊗n, |β j| ≤ 1, |J| ≤ poly(n), (7.1)

and every Pj acting non-trivially on at most k qubits, estimate the
minimal eigenvalue λ0(H) up to additive error ε ≤ 1/poly(n).

This is generally believed to be a hard problem for classical
computers. One way to see this is that the Boolean satisfiability
problem for k = 3 can be encoded in the local Hamiltonian prob-
lem, where (a decision version) of the former problem is known
to be as hard as nay problem in NP.2 Namely, for Boolean vari- 2 In contrast, 2-SAT is known to be in

P.ables x⃗ = (x1, · · · , xn) and a given formula f (x⃗) based on AND,
OR, and NOT operators, the 3-SAT problem asks if there are values
x⃗ = (x1, · · · , xn) such that the formula becomes true. For example,
for n = 6, an instance is

f (x⃗) = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
=C1

∧ (x2 ∨ x3 ∨ x5)︸ ︷︷ ︸
=C2

∧ (x1 ∨ x4 ∨ x6)︸ ︷︷ ︸
=C3

, (7.2)

with the clauses {Cj}j=1,2,3. To encode into the local Hamiltonian
problem, the basic idea is as follows. Note that, e.g., the first clause
has the only non-satisfying assignment (0, 1, 0) and with that we

52 quantum algorithms

can associate an n = 6 qubit Hamiltonian term

HC1 =


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⊗ 14 ⊗ 15 ⊗ 16 , (7.3)

where now ⟨x|HC1 |x⟩ = 0 if and only if x⃗ satisfies the clause.
Encoding in the same way all clauses {Cj}j∈J of a formula f (x⃗)
into local Hamiltonian terms gives the Hamiltonian

H = ∑
j∈J

HCj (7.4)

and finding the minimal eigenvalue corresponds to determining
the minimal number of unsatisfied clauses, with λmin(H) = 0 if
and only if the formula f (x⃗) is satisfiable. Finally, known hardness
results for 3-SAT, i.e., Cook’s theorem,3 then imply the NP-hardness 3 Stephen A. Cook. The complexity

of theorem-proving procedures. In
Proceedings Symposium on Theory of
Computing, STOC ’71, page 151, 1971

for (a decision version of) the local Hamiltonian problem as stated
above.

In fact, by having general non-commuting local Hamiltonian
terms, one can even show — in a precise complexity-theoretic
sense — that already for k = 2 the local Hamiltonian problem is
in general believed to be hard for a quantum computer as well!
However, all of these hardness results use Hamiltonians which
do not actually come from physical systems, and there is the hope
that under further, reasonable physical assumptions the problem
becomes feasible on a quantum computer. In any case, what this
analysis shows, is that further structure is needed in order to hope
for (provably) efficient algorithms.

One possibility that we pursue in the following, is to assume that
we have an Ansatz state |ψAnsatz⟩ at hand, which is promised to have
some (a priori unknown) overlap

γAnsatz = |⟨ψAnsatz|ψ0⟩|2 > 0 (7.5)

with the true ground state |ψ0⟩ of H, which corresponds to the
eigenvector with minimal eigenvalue λ0(H). This is called the
guided local Hamiltonian problem and a combination of quantum
phase estimation (Chapter 5) together with Hamiltonian simulation
(Chapter 6) is immediately applicable.

Whereas the black box availability of an appropriate Ansatz state
ultimately leaves things up to heuristic methods, our ambition is
now to make rigorous statement assuming that we have an Ansatz
state of certain quality at hand. On a complexity-theoretic level, one
can (roughly) show that classical computers can solve the guided
local Hamiltonian problem up to constant precision starting from
γAnsatz = const., whereas a quantum computer can solve the guided
local Hamiltonian problem up to precision inverse polynomial
starting from γAnsatz = 1/poly(n).4 Importantly, the latter precision 4 Sevag Gharibian and François

Le Gall. Dequantizing the quan-
tum singular value transformation:
Hardness and applications to quan-
tum chemistry and the quantum PCP
conjecture. In Proceedings Symposium
on Theory of Computing, STOC 2022,
page 19, 2022

requirement is the relevant setting in practice — but of course still
requires good Ansatz states to start with.

ground state energy estimation 53

Leaving precise complexity-theoretic considerations aside going
forward, the three necessary steps are: (i) mapping the quantum
many body system and corresponding Hamiltonian of interest to
qubits (Section 7.2), (ii) derive and prepare an appropriate Ansatz
state (Section 7.4), and (iii) run quantum phase estimation on these
inputs (Section 7.3).

7.2 Mapping to qubit form

How does one map general interacting quantum many body sys-
tems to n-qubit Hamiltonians? Condensed matter physics examples
that we saw include the one-dimensional Heisenberg chain (Ex-
ample 14) and the two-dimensional Ising model (Example 15).
However, these models were already natively given in qubit form
because they describe lattice models, where each vertex accommo-
dates an electron, which has two spin degrees of freedom (= one
qubit), and the interaction of these is directly modeled with Pauli
matrices.

Another example are fermionic systems, such as, e.g., electrons for
the description of molecules in computational quantum chemistry.
Here, the electrons interact with heavy nuclei through the Coulomb
interaction, and in good approximation the Born-Oppenheimer
approximation treats the nuclei as static point charges. Working
with the electrons in so-called second quantization and making an
Ansatz onto n basis states, the resulting effective Hamiltonian can
be written as5 5 So far, these are all standard sim-

plifications/approximations from
chemistry — that are equally the start-
ing point in classical methods.

H =
n

∑
pq=1

hpq · a†
paq +

n

∑
pqrs=1

gpqrs · a†
pa†

q aras , (7.6)

in terms of the fermionic creation a†
p and annihilation ap operators,

and coefficients hpq, qpqrs ∈ R. Without going into the underlying
physics, the relevant properties are the fermionic anti-commutation
relations

{ap, a†
q} = apa†

q + a†
q ap = δpq · 1 (7.7)

{ap, aq} = {a†
p, a†

q} = 0 , (7.8)

and one needs to map these to the Pauli matrices σ0 = 1, σ1 = X,
σ2 = Y, and σ3 = Z with the relations

{σj, σk} = 2δjk · 1 . (7.9)

A fermion to qubit mapping then maps the relations in Eqs. (7.7)–
(7.8) to the relations in Eq. (7.9), and one way to achieve this is the
Jordan-Wigner transformation

ap = Z⊗(p−1) ⊗ 1
2
(X + iY)︸ ︷︷ ︸

on p-th qubit

⊗1⊗(n−p) , (7.10)

that you will verify in Exercise Sheet 9. The Jordan-Wigner transfor-
mation is the most simple, but note that it introduces non-locality.

54 quantum algorithms

Other more involved mappings that avoid this are possible as well,
and you will explore that in Exercise Sheet 9.

Another closely related model of a quantum many body system
is the Fermi-Hubbard lattice model, which was specifically introduced
to understand the phenomena of high temperature superconductiv-
ity.6 The advantage here is that the number of terms in the corre- 6 Ground state energy estimation is not

quite enough for this task and instead
one needs to understand thermal
Gibbs states for temperature T > 0.

sponding fermionic Hamiltonian only scales linearly in the number
of lattice sites n, compared to the O

(
n4) worst case scaling for the

molecular fermionic Hamiltonians from Eq. (7.6). We do not discuss
the Fermi-Hubbard model further, but mention that a complete un-
derstanding of the phase diagram is still elusive, and hence there is
room for algorithms with small quantum footprint to be impactful.

Other relevant quantum many body systems of interest are
within nuclear physics or models of quantum gravity. However, we
refrain from treating those, partly because the quantum resources to
simulate and resolve such systems seems to be considerably more
costly than examples in condensed matter physics and computa-
tional quantum chemistry.

7.3 Quantum phase estimation

Having mapped the Hamiltonian of interest to qubits, assume that
we are given an n-qubit Hamiltonian

H = ∑
j∈J

β jPj for Pj ∈ {X, Y, Z,1}⊗n and β j ∈ R, (7.11)

with β = max
j∈J

|β j|, |J| ≤ poly(n), (7.12)

and an Ansatz state |ψAnsatz⟩ with γAnsatz = |⟨ψAnsatz|ψ0⟩|2, where
|ψ0⟩ denotes the eigenvector of H with minimal eigenvalue λ0(H).
To keep things simple, we further assume that all eigenvalues
{λi(H)}2n−1

i=0 of H have an exact d-bit binary representation, and
that

λ0(H) < λ1(H) ≤ λ2(H) ≤ · · · , (7.13)

with the spectral gap ∆(H) = λ1(H)− λ0(H) also resolvable with a
d-bit binary representation.

Under these (strong) assumptions, we can then run quantum
phase estimation as discussed in Chapter 5 and Exercise Sheet 5 for
the unitary

U = exp(−iπH) with H =
H

∑j∈J |β j|
, (7.14)

and input state

|ψAnsatz⟩ = ⟨ψAnsatz|ψ0⟩ · |ψ0⟩+
2n−1

∑
j=1

αj|ψj⟩ , (7.15)

written in the eigenbasis {|ψj⟩}2n−1
j=0 of H. Note that H, H, and

exp(−iπH) have the same eigenvectors, and that it would be suf-
ficient to instead use the normalized Hamiltonian H · ∥H∥−1

∞ to

ground state energy estimation 55

resolve λ0(H). However, as we do not have direct access to ∥H∥∞,
we employ the sufficient upper bound ∥H∥∞ ≤ ∑j∈J |β j|.

In more detail, employing the polynomial time quantum circuit
from Section 5.2 on n + d qubits, the most expensive operation is to
implement (a controlled version) of the unitary

U2d−1 = exp
(

iπ
(

2d − 1
)

H̄
)

, (7.16)

which can be achieved by means of Hamiltonian simulation as
discussed in Chapter 6. Assuming that the Hamiltonian simulation
can be done exactly, this outputs λ0(H) exactly, with probability
γAnsatz, and thus

repeating the circuit O
(

γ−1
Ansatz

)
(7.17)

will lead to success. Using, e.g, the LCU methods — which comes
at the cost of few additional ancilla qubits — the complexity of
Hamiltonian simulation for Eq. (7.16) roughly scales as

O
(

2d · poly(n)
)

(7.18)

for an exponentially small ε = 2−n Hamiltonian simulation approxi-
mation error.7 7 Even though this error is exponen-

tially small, strictly speaking one stills
needs to argue about the worst case
error propagation in the quantum
phase estimation circuit.

Now, with more work, one can eliminate some of the assump-
tions made. In particular, with little additional cost, the assumption
on the exact d-bit binary representation of the {λi(H)}2n−1

i=0 can
be dropped. However, any schemes will retain a dependence on
the spectral gap ∆(H), and the precision d has to be chosen such
that this gap can be resolved. Besides working out slick quantum
circuits for quantum phase estimation as discussed in Section 5.3,
modern work goes into achieving favorable scaling with regards
to the ∆(H) gap dependence. Finally, we emphasize again that the
relevant quantum circuits have to be repeated O

(
γ−1

Ansatz

)
many

times, and for that to be efficient one needs γAnsatz = 1/poly(n).
In the following Section 7.4 we critically assess when this can be
achieved.

7.4 Quantum state preparation and other bottlenecks

The quantum algorithm presented in Section 7.3 is only efficient if
one has the ability to get a good Ansatz state |ψAnsatz⟩ with at least
γAnsatz = 1/poly(n). The physical intuition is that nature typically
has such a state available, just because systems are usually observed
in low energy states (unless otherwise stimulated). The task of a
quantum computer is then to mimic nature in that aspect, but the
crucial question is how to do this efficiently. In particular, it can be
shown that generic quantum states have an exponentially small
overlap 2−n with the true ground state |ψ0⟩.

The first option to try to resolve this, is to use the best available
guess |ψAnsatz⟩ for the true ground state coming from state-of-the-
art classical methods such as versions of density functional theory

56 quantum algorithms

(DFT) or tensor network methods (DMRG) for more strongly corre-
lated systems. There are, however, some fundamental difficulties to
be aware of:

• Classical methods are usually not rigorous — even if they come
from first principles — and as such, end-to-end schemes become
heuristic.

• Given any classical description of an Ansatz state |ψAnsatz⟩, one
still needs to find efficient quantum circuits to prepare it on the
quantum computer.

• Classical methods typically deliver Ansatz states that are a good
local approximation to the true ground state, but not globally.
Note that this is sufficient to reproduce precise energy estimates
within the classical methods as the Hamiltonian is build from
local interaction terms. It is unfortunately not good enough for
phase estimation that asks for a good global overlap γAnsatz =

|⟨ψAnsatz|ψ0⟩|2. So in this sense, the classical methods deliver
good estimates of the energy spectrum, but not necessarily states
with good global overlap to the true ground state.

The second option is to work with more physically inspired
schemes via adiabatic state preparation. Here, the idea is to start with
preparing the ground state of a simple Hamiltonian H(0), and then
slowly evolving this simple Hamiltonian via a time-dependent version
of Hamiltonian simulation to the Hamiltonian of interest H = H(1).
The adiabatic theorem from quantum mechanics then tells us that
if the evolution is slow enough with respect to the spectral gaps
∆(H(t)), then the system (approximately) stays in its ground state
throughout, and we end up with a good Ansatz state |ψAnsatz⟩ for
the final Hamiltonian H = H(1). The crux here is to make this
procedure precise and (provably) efficient. In particular, the adia-
batic scheduling function has to be chosen such that the spectral
gap ∆(H(t)) never becomes exponentially small 2−n. Nevertheless,
adiabatic state preparation is often cited as a promising direction
and you numerically investigated a small scale adiabatic scheme in
Exercise Sheet 8.

The third option is to prepare finite temperature Gibbs states,
which for sufficiently low temperature T also approximate the
ground state well. This is again motivated by physical considera-
tions, as systems typically thermalize to an equilibrium when in-
teracting with its environment. The idea of Gibbs state preparation
algorithms is to mimic this with quantum Monte Carlo methods,
such as, e.g., quantum Metropolis sampling.8 General, rigorous 8 K. Temme, T. J. Osborne, K. G.

Vollbrecht, D. Poulin, and F. Verstraete.
Quantum Metropolis sampling. Nature,
471:87, 2011

statements on efficiency seem out of reach, but the techniques are
currently actively explored and there are some promising indica-
tions on practical run times. We will not explore Gibbs state prepa-
ration as it involves departing from the quantum circuit model and
working with open quantum systems.9 9 Chi-Fang Chen, Michael J. Kas-

toryano, and András Gilyén. An
efficient and exact noncommutative
quantum Gibbs sampler. 2023. URL
http://arxiv.org/abs/2311.09207

http://arxiv.org/abs/2311.09207

ground state energy estimation 57

Finally, even once one has a good Ansatz state, e.g., with per-
fect overlap γAnsatz = 1, the quantum resources needed to resolve
quantum many body systems of interest might still be prohibitively
high. An often cited numerical example that is classically on the
verge of being challenging is the so-called FeMoco molecule that is
the primary co-factor of nitrogenase, that catalyzes the conversion
of atmospheric nitrogen molecules N2 into ammonia NH3 through
nitrogen fixation. Starting from the classical description, the typ-
ical Ansatz uses 153 qubits (without counting any ancilla qubits)
and in order to resolve chemical accuracy at 0.0016 Hartree, cur-
rent estimates give at least an order of 1010 quantum gates.10 As 10 Joonho Lee, Dominic W. Berry,

Craig Gidney, William J. Huggins,
Jarrod R. McClean, Nathan Wiebe, and
Ryan Babbush. Even more efficient
quantum computations of chemistry
through tensor hypercontraction. PRX
Quantum, 2:030305, 2021

such, there are a plethora of modern techniques with the goal of
further reducing the quantum resources needed. For example, this
includes:

• Hamiltonian reduction techniques using symmetries to minimize
the number of qubits.

• Low-rank decomposition techniques to reduce the number of
terms in the resulting n-qubit Hamiltonian.

• Specialized algorithms that optimize phase estimation and
Hamiltonian simulation all at once. This, e.g., includes ran-
domized techniques that just scale quadratically with the Pauli
weight λ = ∑j∈J |β j| of the n-qubit Hamiltonian — instead of the
generic poly(n) scaling — and solely use one ancilla qubit.11 11 Kianna Wan, Mario Berta, and

Earl T. Campbell. Randomized
quantum algorithm for statistical
phase estimation. Physical Review
Letters, 129:030503, 2022

To conclude, we emphasize that there is no known rigorous and
general end-to-end quantum speed-up for the complexity-theoretic
hard problem of ground state energy estimation. However, there
are various promising avenues to further explore strong quantum
heuristics that could give good practical run times and eventually
become competitive with classical techniques.

In this regard, we should recall that even though the dimension
of the n-qubit Hamiltonian is 2n, any classical methods used in
practice do not keep track of the exponentially many amplitudes
of the quantum state, but rather make use of the locality of the
Hamiltonian to come up with locally well-performing Ansätze
that scale in practice as poly(n). As such, any quantum algorithm
actually has to compete with these polynomial run times, and not
with the generic 2n dimension bound.

For further discussions specifically on computational quantum
chemistry, we refer to the review article,12 and a recent critical 12 Sam McArdle, Suguru Endo, Alán

Aspuru-Guzik, Simon C. Benjamin,
and Xiao Yuan. Quantum computa-
tional chemistry. Reviews of Modern
Physics, 92:015003, 2020

discussion on potential quantum speed-up.13

13 Seunghoon Lee et al. Evaluating
the evidence for exponential quantum
advantage in ground-state quantum
chemistry. Nature Communications, 14:
1952, 2023

8
Quantum linear system solver (QLSS)

8.1 Task and classical landscape

In this chapter we consider the following problem and its classical
versus quantum complexity:

The linear system of equations problem is given by a complex N × N
matrix A and complex vector b⃗ of length N, and the goal is to write
down (or sample) from a vector x⃗ of length N such that Ax⃗ = b⃗.

If A has full rank, there exists a solution vector of the form

x⃗ = A−1⃗b (8.1)

and hence the problem can be reduced to matrix inversion, plus
matrix-vector multiplication.1 Standard Gaussian elimination then 1 If A does not have full rank, the

same argument can be made using the
pseudo-inverse, which corresponds to
the inverse on the support of A. NB:
This even works for the more general
case of N × M matrices with N ̸= M.

solves the linear system of equations problem exactly, with algorith-
mic complexity O

(
N3)— or more precisely with the best known

matrix multiplication exponent O
(

N2.371339). In addition, a mem-
ory of size O(N2) is needed to have access to the input data (A, b⃗)
in the first place.

The applications of this problem to scientific computing are
indirect, but fundamental and manifold. This, e.g., includes solving
differential equations, sub-routines in machine learning, interior
point methods for optimization problems, to name a few. When the
size N becomes very large, Gaussian elimination might no longer
be feasible and one might resort to algorithms from randomized
linear algebra. The characteristics of these methods are as follows:

• Typically, they do not read the whole matrix A or vector b⃗, but
rather only sample certain entries with certain probabilities (for
which randomness is needed).

• There are different variations of how sample access is provided,
and typically information about the input data (A, b⃗) in addition
to just its matrix elements in the computational basis is required
(e.g., the condition number of the matrix A, discussed later).

• They only produce with a non-zero probability an approxima-
tion to the solution vector x⃗. Alternatively, even only sampling

60 quantum algorithms

access to an approximate version to x⃗ is achieved, such as, e.g.,
sampling an element xi of the solution vector.

• The complexity of the methods depends not only on the di-
mension of the problem, but also on other parameters of the
input data (A, b⃗). This includes the sparsity s(A) of the matrix
A in terms of row and/or column sparsity, the condition number
κ(A) = ∥A∥∞ ·

∥∥A−1
∥∥

∞ of the matrix A, or the approximate rank
of the matrix A measured by ∥A∥F.

As an example, you will explore in Exercise Sheet 9 the random-
ized Kaczmarz algorithm,2 that, given access to the vector two-norm 2 Thomas Strohmer and Roman Ver-

shynin. A randomized Kaczmarz
algorithm with exponential conver-
gence. Journal of Fourier Analysis and
Applications, 15:262, 2009

of the columns, as well as the total ∥A∥F, produces a vector y⃗ of
length N with ∥x⃗ − y⃗∥2 ≤ ε in complexity

O
(

s(A)κF(A)2 log
(

ε−1
))

(8.2)

for the row sparsity s(A) and the Frobenious condition number
κF(A) = ∥A∥F∥A−1∥∞. Note that it is not necessary for the al-
gorithm to a priori know ∥A−1∥∞, but rather the iterative algorithm
will just provably terminate after a number of repetitions scaling
with ∥A−1∥∞. Nevertheless, the scheme is only efficient when A is
well-conditioned with κF(A) ≪ N, and in practice this is not a given
at all. Consequently, the use of randomized algorithms for linear
systems of equations only makes sense in combination with linear
system pre-conditioners, which do some pre-computations to bring
the linear system into a form with well-scaling, reduced condition
number. These pre-conditioning techniques are mostly heuristic
and it is of course also important to keep the complexity at least
comparatively efficient to the main routines.

There are other, quantum-inspired or dequantized classical random-
ized linear system solvers that roughly scale as3 3 Changpeng Shao and Ashley Mon-

tanaro. Faster quantum-inspired
algorithms for solving linear sys-
tems. ACM Transactions on Quantum
Computing, 3:4, 2022

Õ
(

κ(A)2κF(A)4ε−2
)

, (8.3)

where the tilde denotes up to poly-logarithmic correction terms. By
inspection, the complexity is completely independent of the dimen-
sion N or the sparsity s(A). However, these techniques come with
a different, non-standard input model about the input matrix. They
also have worse approximation error scaling that is no longer loga-
rithmic, and they only allow to approximately query entries of the
solution vector x⃗ (instead of outputting the whole vector). As such,
the randomized Kaczmarz algorithm and other related stochastic
gradient descent methods have their practical use cases, whereas
the quantum-inspired methods have so far basically exclusively
been discussed in the theoretical computer science literature.

8.2 Quantum task

Given the fundamental role of the linear system of equations prob-
lem for scientific computing, it is natural to ask for quantum al-
gorithms for the problem. For example, looking at the classical

quantum linear system solver (qlss) 61

landscape, there are no strong classical algorithms to handle ma-
trices that are sparse s(A) ≪ N, but still have high approximate
rank as quantified by ∥A∥F ≈ N. However, quantum computers
can only process quantum states (normalized vectors) with unitary
operations and consequently one first has to define a version of the
linear system of equations problem that is amenable to quantum
methods.

One can without loss of generality only consider Hermitian
matrices A = A†, and for simplicity, we focus in this chapter on that
case, with the additional assumptions that N = 2n and ∥A∥∞ = 1.
(These are not restrictive).

Given a Hermitian matrix A of size 2n × 2n with ∥A∥∞ = 1, a
complex vector b⃗ of length 2n, and an approximation parameter
ε ∈ (0, 1), a quantum linear system solver (QLSS) uses n algorithmic
qubits (and further ancilla qubits) towards outputting an n-qubit
quantum state |y⟩ such that

∥|y⟩ − |x⟩∥2 ≤ ε for |x⟩ =
∑2n−1

j=0 xj|j⟩∥∥∥∑2n−1
j=0 xj|j⟩

∥∥∥
2

defined by Ax⃗ = b⃗ (8.4)

with x⃗ = (x0, · · · , x2n−1).

Notice that this features a twofold normalization in the problem
formulation: We chose to focus on the case ∥A∥∞ = 1 and the solu-
tion quantum state |x⟩ is equal to the solution vector x⃗ normalized
by ∥x⃗∥2. Notice further that in the end one just has the quantum
state |x⟩ sitting in the quantum computer. By measuring this quan-
tum state, this then allows to sample certain properties of x⃗, such
as, e.g., overlaps ⟨ϕ|x⟩ with n-qubit quantum states |ϕ⟩ (at the cost
of some additional sample complexity). However, QLSSs do not
give efficient access to the full solution vector x⃗, as this would re-
quire an additional sample complexity scaling with the dimension
N.4 Nevertheless, the above suggests that quantum computer can 4 Scott Aaronson. Read the fine print.

Nature Physics, 11:291, 2015sample from the solution of linear systems of equations of dimen-
sion N = 2n with only n qubits space cost!

8.3 Quantum data access

To quantify the actual complexity and overall end-to-end imple-
mentation cost of QLSSs we need to specify how the matrix A and
the vector b⃗ are accessed and loaded into the quantum computer.
Concerning the vector b⃗, the standard model is to assume access to
a preparation unitary (and its inverse)

Ub|0⊗n⟩ = |b⟩ =
∑2n−1

j=0 bj|j⟩∥∥∥∑2n−1
j=0 bj|j⟩

∥∥∥
2

with b⃗ = (b0, · · · , b2n−1), (8.5)

and the complexity of the QLSS is then quantified by the number
of times Ub and its inverse are invoked (among other contributing

62 quantum algorithms

factors). Note, however, that Ub will also have some complexity
to be implemented, and unless the elements are computed on-the-
fly, this implementation scales at the very least with the sparsity
s(b) of b⃗. Similarly as the coherent data loading of the relevant
coefficients for the LCU Hamiltonian simulation method (Section
6.4), the detailed construction of corresponding quantum circuits is
related to quantum random access memories, which we discuss in
Chapter 9.

Concerning the Hermitian matrix A, there are different data
loading models and motivated by the complexity bottleneck in the
landscape of classical linear system solvers, we mention in partic-
ular the sparse access model: First, one assumes access to a matrix
entry query oracle unitary (and its inverse)

UA,entry : |i, j⟩ ⊗ |0⟩ 7→ |i, j⟩ ⊗ |(A)i,j⟩ , (8.6)

where the last register uses some d many qubits to load the matrix
entries (A)i,j with d-bits of precision. Importantly, and in contrast
to what is needed for classical solvers, this gives coherent access to
the matrix elements by loading them into quantum amplitudes.
Second, assuming that the exponentially large matrix A is both
exactly row and column s(A) sparse, one assumes access to these
non-zero positions through a query oracle unitary (and its inverse)

UA,pos : |k, l⟩ 7→ |k, pos(k, l)⟩ , (8.7)

where the s(A) non-zero entries in column k are at positions

pos(k, 0), · · · , pos(k, s(A)− 1) . (8.8)

The complexity of the QLSS is then quantified by the number of
times UA,entry, UA,pos, and its inverses are invoked (among other
contributing factors). Like for Ub, and again unless the elements
are computed on-the-fly, the detailed construction and cost of these
unitaries UA,entry and UA,pos is related to quantum random access
memories, which we discuss in Chapter 9. Here, we just note that
this construction will scale at the very least with the sparsity s(A).

8.4 Basic quantum linear system solver

Having introduced the oracle unitaries (Ub, UA,entry, UA,pos) that
give coherent access to the entries of A and b⃗, we are now ready to
describe the main routines of QLSSs. The first QLSS was introduced
in5 and is based on the quantum phase estimation routine (Chapter 5 Aram W. Harrow, Avinatan Has-

sidim, and Seth Lloyd. Quantum
algorithm for linear systems of equa-
tions. Physical Review Letters, 103:
150502, 2009

5).6

6 In the following, we discuss a sim-
plified version of this algorithm,
following some of the presentation
in Quantum Algorithms For Scientific
Computation, Lin Lin (linked in Section
1).

It is sufficient to consider Hermitian matrices, but we simplify
the problem further and assume that A only has positive eigenval-
ues, i.e., that it is positive definite. (This is not restrictive). Then,
there is an eigendecomposition

A|vj⟩ = λj|vj⟩ (8.9)

quantum linear system solver (qlss) 63

with the (normalized) eigenvectors vj written as quantum states |vj⟩
and increasingly ordered eigenvalues

0 < λ0 ≤ λ1 ≤ · · · ≤ λ2n−1 = 1 . (8.10)

Going forward, we further assume for simplicity that all λj have an
exact d-bit binary representation.

The basic subroutine is to run quantum phase estimation of the
unitary U = exp(i2πA) on the input state |b⟩, leading to a quantum
state of the form

UQPE

(
|0⊗d⟩ ⊗ |b⟩

)
=

2n−1

∑
j=0

β j|λj⟩ ⊗ |vj⟩ . (8.11)

Here, UQPE denotes the quantum phase estimation circuit from
Section 5.2 (excluding the measurements in the end), and

|b⟩ =
2n−1

∑
j=0

β j|vj⟩ (8.12)

is the expansion of |b⟩ in the eigenbasis of A. Note that running
UQPE requires implementing controlled Hamiltonian simulation
exp(i2πtA) for variable t, via the query access unitaries UA,entry

and UA,pos. For now, we continue by just quantifying the complex-
ity of the QLSS by counting the needed calls to UA = exp(i2πA)

and then revisit the point about the implementation of controlled
Hamiltonian simulation later.

In order to solve the linear system of equations, we would like to
create a normalized version of the expression

A−1|b⟩ =
2n−1

∑
j=0

β j

λj
|vj⟩ (8.13)

and towards that, we employ the unitary UC defined via

UC

(
|0⟩ ⊗ |λj⟩

)
=

√√√√1 − C2

λ̃2
j
· |0⟩+ C

λ̃j
· |1⟩

⊗ |λj⟩ , (8.14)

controlled on an additional ancilla qubit, and where λ̃j approxi-
mates λj, and C denotes some (for now) unspecified normalization
constant of choice. Assuming implementations of UC and UQPE (we
get back to these later), the quantum circuit UQLSS of the QLSS then
takes the form

|0⟩
UC

|0⊗d⟩
UQPE U−1

QPE
|0⊗n⟩ Ub

64 quantum algorithms

and the overall output state becomes

UQLSS

(
|0⟩ ⊗ |0⊗d⟩ ⊗ |b⟩

)
=

2n−1

∑
j=0

β j

√√√√1 − C2

λ̃2
j
· |0⟩+ C

λ̃j
· |1⟩

⊗ |0⊗d⟩ ⊗ |vj⟩ . (8.15)

Discarding the d ancilla qubits and measuring the one remaining
ancilla qubit gives — conditioned on measurement outcome one —
the quantum state

|y⟩ = ∥y⃗∥−1
2

2n−1

∑
j=0

Cβ j

λ̃j
|vj⟩ with y⃗ =

2n−1

∑
j=0

Cβ j

λ̃j
v⃗j (8.16)

on the remaining main n qubits. This is exactly the sought-after
quantum state with ∥|y⟩ − |x⟩∥2 ≤ ε as required by Eq. (8.4).

The success probability of measuring one is

p(1) = ∥y⃗∥2
2 =

∥∥∥∥∥2n−1

∑
j=0

Cβ j

λ̃j
|vj⟩
∥∥∥∥∥

2

2

(8.17)

≈ C2 ·
∥∥∥A−1|b⟩

∥∥∥2

2
(8.18)

and the choice C = λ0 optimizes this. We then find

p(1) ≈ λ2
0 ·
∥∥∥A−1|b⟩

∥∥∥2

2
≥ λ2

0 ·
∥|b⟩∥2

2
∥A∥2

∞
= λ2

0 , (8.19)

and as we assumed ∥A∥∞ = λ2n−1 = 1, we roughly get

p(1) ≥ Ω
(

κ(A)−2
)

. (8.20)

Thus, we need to run above quantum circuit and measurement
about κ(A)2 many times until success. If wanted, this can be im-
proved to O(κ(A)) many runs by means of amplitude amplification,
similarly as for the LCU Hamiltonian simulation scheme presented
in Section 6.4. You will explore this in Exercise Sheet 10.

Next, we estimate the dependence of the complexity on the ap-
proximation error ε. You will show in Exercise Sheet 10, that in
order to achieve the overall approximation error

∥|y⟩ − |x⟩∥2 =

∥∥∥∥ y⃗
∥y⃗∥2

− x⃗
∥x⃗∥2

∥∥∥∥
2
≤ ε (8.21)

one needs to provide the multiplicative approximation

λ̃j = λj(1 + ε/4) ∀j . (8.22)

This then requires to run the quantum phase estimation routine
UQPE to additive precision ελ0 = εκ(A)−1. Hence, to implement
UQPE the needed query complexity to UA = exp(i2πA) becomes
O
(
κ(A)ε−1).

To subsume, the complexity to achieve an ε-approximation be-
comes:

quantum linear system solver (qlss) 65

• In each round one query to Ub and UC

• In each round O
(
κ(A)ε−1) many queries to UA = exp(i2πA)

• Employ O(κ(A)2) many runs.

To break this up further, it remains to construct UC and UA =

exp(i2πA) from the query access oracles UA,entry, UA,pos and its
inverses. For the implementation of UC, we first rewrite the relevant
coefficients from Eq. (8.14) as

θj =
1
π

arcsin

(
C
λj

)
(8.23)

with θ̃j its corresponding d-bit representation, leading to

UC

(
|0⟩ ⊗ |λj⟩

)
=
(

cos(πθ̃j)|0⟩+ sin(πθ̃j)|1⟩
)
⊗ |λj⟩ . (8.24)

Then, given a d-bit representation of an angle θ, you will show in
Exercise Sheet 10, how to implement the (d + 1)-qubit unitary Uθ

acting as

Uθ : |0⟩ ⊗ |θ⟩ 7→
(

cos(πθ)|0⟩+ sin(πθ)|1⟩
)
⊗ |θ⟩ (8.25)

Further, in Exercise Sheet 10, you will also explore classical arithmetic
circuits employing d ancilla qubits and poly(d) many elementary
quantum gates to implement Eq. (8.23). That is, implementing the
unitary

Utrig

(
|0⊗d⟩ ⊗ |λj⟩

)
= |θ̃j⟩ . (8.26)

Overall, the quantum circuit for UC then takes the form

|0⟩

Uθ

cos(πθ̃j)|0⟩+ sin(πθ̃j)|1⟩

|0⊗d⟩
Utrig U−1

trig

|0⊗d⟩

|λj⟩ |λj⟩

Going forward, we assume that d is chosen large enough such that
we can ignore the resulting finite arithmetic approximation error
from θ̃j versus θj.7 7 Strictly speaking one would have to

carefully monitor the error propaga-
tion.

The implementation of powers of UA = exp(i2πA) corresponds
to Hamiltonian simulation of the Hamiltonian A, with variable
times t up to t = O

(
κ(A)ε−1). However, contrary to the ground

state energy estimation problem where the Hamiltonian was given
in terms of its sparse Pauli decomposition (Chapter 7), the matrix
A is now given in terms of the sparse oracle access in the compu-
tation basis, via UA,entry, UA,pos and its inverses. As such, one can
no longer just import the Hamiltonian simulation methods from
Chapter 6.

Luckily, for example, a version of the LCU method from Section
6.4 can be worked out for the sparse input model as well, scaling

66 quantum algorithms

for an ε-approximate Hamiltonian simulation with

O
(

t · poly(n, s(A)) log
(

ε−1
))

(8.27)

in terms of the query complexity to UA,entry, UA,pos and its in-
verses — plus some additional constant quantum gate overhead.
Going forward, we ignore the scaling of the approximation er-
ror from Hamiltonian simulation, as it can be made exponentially
small.8 8 Strictly speaking one would have to

carefully monitor the error propaga-
tion.

Having sketched the quantum circuit of all the necessary compo-
nents, one arrives at the complexity of

• O
(
κ(A)ε−1 · poly(n, s(A))

)
many queries to UA,entry, UA,pos and

its inverses

• one query to Ub

• some constant quantum gate overhead,

for each of the required O(κ(A)) many rounds (using the version
with amplitude amplification).

Assuming that the matrix A is sparse with s(A) = poly(n) equally
for both rows and columns, and that the vector b⃗ is sparse as well
with s(b) = poly(n), this leads to the complexity

Õ
(

κ(A)2ε−1
)

, (8.28)

where the tilde denotes up to poly-logarithmic correction terms. If
the matrix A is well-conditioned with scaling κ(A) = O(poly(n)),
and the oracles Ub, UA,entry, and UA,pos can all be implemented in
complexity poly(n), the overall complexity of QLSSs stays poly(n)
for input matrices of dimension 2n.

The implementation of the oracles might be achieved with the
help of quantum random access memory (see Chapter 9). However,
note that while the algorithmic complexity of the quantum random
access memory might be poly(n), it will still require at least as
many qubits as non-zero entries in the input data (A, b⃗). (And the
number of memory qubits might then be much larger than the
n + d + 1 algorithmic qubits used.)

8.5 State-of-the-art methods and caveats

There are various technical assumptions we made that can be
dropped:9 9 Pedro C.S. Costa, Dong An, Yuval R.

Sanders, Yuan Su, Ryan Babbush, and
Dominic W. Berry. Optimal scaling
quantum linear-systems solver via
discrete adiabatic theorem. PRX
Quantum, 3:040303, 2022

• The normalization ∥A∥∞ = 1 and the positivity A > 0, e.g.,
extending to Hermitian A = A†.

• The exact d-bit binary representation of the eigenvalues {λj} and
the d-bit binary representation of the angles {θj}.

quantum linear system solver (qlss) 67

• The QLSS outputs a quantum state of the normalized solution
vector, but if the normalization is also needed, it can be deter-
mined at comparable cost as described above.

Based on the most recent adiabatic methods (cf. your explorations
from Exercise Sheet 8), the complexity of QLSSs can be brought
down to

O
(

κ(A) log
(

ε−1
))

(8.29)

many queries to a block encoding data access to A. This access can
be constructed from the oracles UA,entry, UA,pos and its inverse with
only small overhead costs (see the last Chapter 10). The complexity
in Eq. (8.29) is then also optimal.

However, for estimating the norm of the solution vector, there
is a lower bound of Ω(κ(A)ε−1), showing that poly-logarithmic
scaling in the approximation error is not possible for this task.10 10 Alexander M. Dalzell. A shortcut

to an optimal quantum linear system
solver. 2024. URL http://arxiv.org/

abs/2406.12086

There are various further caveats that stay with QLSSs and any
potential application must take these into account:

• In order to create the oracles Ub, UA,entry, and UA,pos based on
quantum random access memory, one needs additional memory
qubits that scale at least with the sparsity. The cost of this can be
significant and all dominating.

• The quantum state |y⟩ outputted by the QLSS does not directly
reveal any classical information about the solution of the linear
system of equations. If one is for example to measure an overlap
⟨ϕ|x⟩ with some fixed n-qubit state |ϕ⟩, an additional sampling
complexity of O(ε−2) is needed, bringing the end-to-end cost of
the state-of-the-art QLSS from Eq. (8.29) to

Õ
(

κ(A)ε−2
)

, (8.30)

ignoring poly-logarithmic terms. If one does want full informa-
tion about the (normalized) classical solution vector x⃗, one can
show that the overall scheme scales as (see, e.g.,11) 11 Alexander M. Dalzell, B. David

Clader, Grant Salton, Mario Berta,
Cedric Yen-Yu Lin, David A. Bader,
Nikitas Stamatopoulos, Martin J. A.
Schuetz, Fernando Brandão, Hel-
mut G. Katzgraber, and William J.
Zeng. End-to-end resource analysis for
quantum interior-point methods and
portfolio optimization. PRX Quantum,
4:040325, 2023a

Õ
(

Nκ(A)ε−2
)

, (8.31)

which, unfortunately, again picks up the exponential dependence
N. Note that this is then also (nearly) matched by randomized
classical solvers.

• Generic matrices are not well conditioned and as such κ(A) can
become very large, rendering QLSSs useless. So, similarly as in
the classical case, one should therefore heavily use linear system
pre-conditioners.

Given all of the above, full end-to-end complexities of QLSS
for applications remain largely unclear, and have to be explored

http://arxiv.org/abs/2406.12086
http://arxiv.org/abs/2406.12086

68 quantum algorithms

further. Regarding this, we recently proposed an alternative hy-
brid randomized QLSS that only uses a classical data structure and
completely avoids the use of quantum random access memory,
whenever the matrix A is given in the Pauli basis (which is, e.g.,
useful for Hamiltonians and computing corresponding Green’s
functions).12 12 Samson Wang, Sam McArdle, and

Mario Berta. Qubit-efficient random-
ized quantum algorithms for linear
algebra. PRX Quantum, 5:020324, 2024

9
Quantum random access memory (QRAM)

9.1 Motivation

Quantum algorithms operating on classical data, such as QLSSs
discussed in Chapter 8, typically assume that the data is readily
available by loading it into the quantum processing unit (QPU).
The complexity of this step is then often quantified in terms of
the number of queries to such a classical data loading routine.
However, for true end-to-end complexities, explicitly constructing
data loading oracles for unstructured classical data sets, comes at a
cost — both in terms of quantum gate complexity, and space cost in
terms of the qubit count. In the literature, the term quantum random
access memory (QRAM) is used with various meanings, but in the
following, we understand it generally as a construction that enables
coherent access to classical data, such that multiple different elements
in a classical database can be read in superposition.1 1 Similar constructions are available

for loading and operating on quantum
data, but this is beyond the scope of
the lecture.

The main example tasks we are interested in are quantum state
preparation from data vectors (Sections 9.2 – 9.3) and loading matrix
elements into quantum states (Sections 9.4 – 9.6). For a given clas-
sical data set of certain size and structure, we are then interested
in the qubit cost, the quantum gate cost, and the quantum gate
depth required to perform these data loading operations. The gate
depth thereby corresponds to how many layers of quantum gates —
executed in parallel — it takes to complete the task. It is defined as
the longest path in the quantum circuit, and for architectures that
easily allow to run quantum gates on different qubits in parallel,
depth corresponds to time complexity. Note that there is typically a
trade-off between space cost and time complexity.

9.2 Quantum state preparation: Basic ideas

Here, we consider the task of generating an n-qubit state

|b⟩ = 1∥∥∥∑2n−1
i=0 bi|i⟩

∥∥∥
2

·
2n−1

∑
i=0

bi|i⟩ (9.1)

from a given classical data vector b⃗ = (b0, · · · , b2n−1) of length 2n.
This is a necessary sub-routine for LCU Hamiltonian simulation

70 quantum algorithms

as introduced in Section 6.4, as well as for the QLSSs discussed
in Chapter 8. Note the exponential compression of the classical
memory space 2n to only n qubits.

Now, to create |b⟩ one needs by definition at least n-qubits, but
one might also employ (plentiful) ancilla qubits. In Exercise Sheet
11, you will explore a hard-coded n-qubit unitary Ub that directly
prepares |b⟩ with O(n) ancilla qubits and O (n · 2n) many gates.2 2 The scheme can be improved to

no ancilla qubits and the optimal
depth O (2n/n) with more advanced
methods.

This is already sufficient for the required LCU Hamiltonian sim-
ulation unitary V from Eq. (6.41), but for QLSS applications one
would like to stay within poly(n) complexity to have the potential
for large quantum speed-up.

Unfortunately, there are information-theoretic lower bounds dictat-
ing that any quantum circuit preparing the 2n different amplitudes
from Eq. (9.1) requires at least Ω (2n) many gates.

While this is bad news, one can resort to quantum depth, which
corresponds to the time it takes to prepare the quantum state.
While aforementioned O (n · 2n) gates method also has O (n · 2n)

depth, it is possible to create |b⟩ with only O(n) depth — albeit at
the cost of O (2n) many ancilla qubits and still with O (2n) total
gate count.3 This is then more similar to classical data structures, 3 If the state |b⟩ is s-sparse, meaning

that only s of the coefficients {bi} are
non-zero, then advanced methods lead
to the greatly improved O(log(ns))
depth with only O(ns log s) ancilla
qubit space cost.

that can load entries fast, i.e., in logarithmic depth, at the price of
a large linear space cost. In the remainder of this section, we dis-
cuss the main ideas of the O(n) depth construction following the
presentation in.4

4 B. David Clader, Alexander M.
Dalzell, Nikitas Stamatopoulos, Grant
Salton, Mario Berta, and William J.
Zeng. Quantum resources required
to block-encode a matrix of classical
data. IEEE Transactions on Quantum
Engineering, 3:1, 2022

For simplicity, we assume that the coefficients {bi} are real and
positive (this is not essential), and use the notation

b⃗ = [b0, · · · , b2n−1] and bv
u = [bu, · · · , bv−1] for v > u. (9.2)

The first step is to arrange the data into a binary tree structure of
depth n, in a fashion where the amplitudes b2

i are stored in the leaf
notes of the tree. This is depicted in Figure 9.1.

||𝑏||!!

𝑏"! 𝑏!!#$
!

||𝑏"!
!"#||!! ||𝑏!!"#

!! ||!!

Figure 9.1: Binary tree data structure
with n levels, arranging the coefficients
[b0, · · · , b2n−1] of the vector b⃗.

Based on this tree data, one can then construct the n-qubit state
|b⟩ in low depth with the following steps:

quantum random access memory (qram) 71

• The state is initialized to |0⊗n⟩.

• On the first qubit, a Y-Pauli rotation by the angle

θ1 = 2 arccos


∥∥∥b2n−1

0

∥∥∥
2∥∥∥⃗b

∥∥∥
2

 (9.3)

is applied. This creates the state

|b(1)⟩ =
(

cos(θ1/2)|0⟩+ sin(θ1/2)|1⟩
)
⊗ |0⊗(n−1)⟩ , (9.4)

where θ1 can be computed from the values stored at the root of
the binary tree and its children.

• On the second qubit, a Y-Pauli rotation by the angle

θ2 = 2 arccos


∥∥∥b2n−2

0

∥∥∥
2∥∥∥b2n−1

0

∥∥∥
2

 or θ3 = 2 arccos


∥∥∥b3·2n−2

2n−1

∥∥∥
2∥∥∥b2n

2n−1

∥∥∥
2

 (9.5)

is applied, where θ2 is used conditioned on the first qubit being
in state |0⟩, and θ3 is used conditioned on the first qubit being in
state |1⟩. This creates the state

|b(2)⟩ = cos(θ1/2)|0⟩
(

cos(θ2/2)|0⟩+ sin(θ2/2)|1⟩
)
⊗ |0⊗(n−2)⟩

+ sin(θ1/2)|1⟩
(

cos(θ3/2)|0⟩+ sin(θ3/2)|1⟩
)
⊗ |0⊗(n−2)⟩ ,

(9.6)

where θ2 and θ3 can each be computed from values stored at one
level two node and its children.

• Extrapolating steps 1 and 2, the state after step k is given by

|b(k)⟩ = ∑
y∈{0,1}k

ay|y⟩ ⊗ |0⊗(n−k)⟩ , (9.7)

where ay = ∥b(y+1)·2n−k

y·2n−k ∥2 · ∥⃗b∥−1
2 and the multiplication with y

and (y + 1) is understood with respect to their binary representa-
tions.

• After the final n-th iteration, the state becomes

|b(n)⟩ = ∑
y∈{0,1}n

ay|y⟩ = ∑
y∈{0,1}n

by

∥⃗b∥2
|y⟩ =

2n−1

∑
i=0

bi

∥⃗b∥2
|i⟩ = |b⟩ .

(9.8)

To comprehend the last two bullet points, notice that we can rewrite
the second level state as

|b(2)⟩ =
(

a00|00⟩+ a01|01⟩+ a10|10⟩+ a11|11⟩
)
⊗ |0⊗(n−2)⟩ (9.9)

72 quantum algorithms

for the values

a00 = cos(θ1/2) cos(θ2/2) =
∥∥∥b2n−2

0

∥∥∥
2
·
∥∥∥⃗b
∥∥∥−1

2
(9.10)

a01 = sin(θ1/2) sin(θ2/2) =
∥∥∥b2n−1

2n−2

∥∥∥
2
·
∥∥∥⃗b
∥∥∥−1

2
(9.11)

a10 = sin(θ1/2) cos(θ3/2) =
∥∥∥b3·2n−2

2n−1

∥∥∥
2
·
∥∥∥⃗b
∥∥∥−1

2
(9.12)

a11 = sin(θ1/2) sin(θ3/2) =
∥∥∥b2n

3·2n−2

∥∥∥
2
·
∥∥∥⃗b
∥∥∥−1

2
. (9.13)

Consequently, the transition from |b(k)⟩ to |b(k + 1⟩ is of the form

|b(k)⟩ = ∑
y∈{0,1}k

ay|y⟩ ⊗ |0⊗(n−k)⟩ (9.14)

7→ ∑
y∈{0,1}k

ay|y⟩
(

ay0

ay
|0⟩+

ay1

ay
|1⟩
)
⊗ |0n−k−1⟩ (9.15)

= ∑
y∈{0,1}k+1

ay|y⟩ ⊗ |0n−k−1⟩ (9.16)

= |b(k + 1)⟩ . (9.17)

That is, a rotation to qubit (k + 1) by an angle

θ1y = 2 arccos
(

ay0

ay

)
(9.18)

is applied, where the subscript 1y is read in binary representation.
The scheme as presented has n layers and it remains to give

explicit quantum circuits to implement it in terms of elementary
quantum gates. We do so in the next section, including estimates of
the complexity in terms of qubit count, depth, and total gate count.

9.3 Quantum state preparation: Circuits

Given a binary tree data structure as depicted in Figure 9.1 with
2n+1 − 1 nodes, we assume that the angles θi for i = 1, · · · , 2n − 1
are classically pre-computed to avoid the need for any arithmetic on
the quantum computer. We further assume that the 2n − 1 angles
have an exact t-bit representation and are stored in (2n − 1)t ancilla
qubits. Then, the starting state on n + (2n − 1)t qubits is given by

|0⊗n⟩ ⊗ |Θ⟩ with |Θ⟩ =
(2n−1)t⊗

i=1

|θi⟩, (9.19)

where the latter is also a computational basis state that can eas-
ily be created by a single layer of Pauli X gates on the appropriate
qubits determined by the classical data angles. The goal is to imple-
ment the state preparation routine

SP
(
|0⊗n⟩ ⊗ |Θ⟩

)
= |b⟩ ⊗ |Θ⟩ , (9.20)

which is accomplished by the following quantum circuit

quantum random access memory (qram) 73

|0⊗n⟩ /n

SP

RY ⊘ RY ⊘ RY · · · ⊘ RY ⊘

/t = ⊘
S2

⊘
S3

⊘ · · ·
Sn

⊘
S†

/a · · ·

|Θ⟩

Here, a = (2n − 2)t denotes all but t ancilla qubits, the symbol ⊘
indicates that a different rotation angle is performed for each of the
2t possible settings of the register, Sp for p = 2, · · · , n swaps the t-
bit description of the next angle into the first ancilla register of size
t, and S† = S†

2 · · · S†
n is resetting the ancilla qubits. For example, for

n = 2 this takes the form

|0⟩ RY • •

|0⟩ RY

|θ1⟩ /t ⊘ × ⊘ ×
|θ2⟩ /t × × × ×
|θ3⟩ /t × ×

Note that the t-bit controlled RY rotation exactly corresponds to the
Uθ gate from Eq. (8.25) that you constructed in Exercise Sheet 10.

Algebraically, for each basis state |j⟩, a different sequence of n
angles is applied, and the corresponding swap networks S2, · · · , Sn

can be written as

Sp =
2n−1

∑
j=0

|j⟩⟨j| ⊗ S(j)
p , (9.21)

where S(j)
p acts on the ancilla qubit registers such that the product

S(j)
p S(j)

p−1 · · · S(j)
1 (9.22)

has the action of swapping the t-bit description of the angle associ-
ated with the p-th rotation for |j⟩ in the first t-qubit ancilla register.
Note that Sp is controlled only by the first p − 1 bits of |j⟩.

Extrapolating from the n = 2 case, a straightforward way to
implement Sp is to first reverse the action of Sp−1 in depth O(p) to
swap out the (p − i)-th angle, and second, to swap in the correct
angle in depth O(p). However, this would lead to the total depth

n

∑
p=1

O(p) = O(n2) , (9.23)

while we are aiming for O(n). The latter can be accomplished by
avoiding to undo the work already accomplished by Sp−1, and
using that Sp can be controlled on just one of the n main qubits.
An example circuit for n = 3 is shown below, with the inverse
operation S† omitted

74 quantum algorithms

|0⟩ RY • • •

|0⟩ RY •

|0⟩ RY · · ·

|θ1⟩ /t ⊘ × ⊘ × ⊘
|θ2⟩ /t × ×
|θ3⟩ /t × · · ·
|θ4⟩ /t × × ×
|θ5⟩ /t × ×
|θ6⟩ /t × · · ·
|θ7⟩ /t ×

In Exercise Sheet 11, you will work through a concrete example of
state preparation with constant precision for n = 2, 3, 4 qubits.5 5 Xiaoming Sun, Guojing Tian, Shuai

Yang, Pei Yuan, and Shengyu Zhang.
Asymptotically optimal circuit depth
for quantum state preparation and
general unitary synthesis. 2021. URL
http://arxiv.org/abs/2108.06150

To conclude, when the precision t is set to constant, above quantum
circuits of depth O(n) prepare the n-qubit state |b⟩, at the price of
O (2n) total gate count and O (2n) many ancilla qubits. For this we
assumed that the relevant angles {θi} are pre-computed classically,
but in principle this could also be done quantumly without affect-
ing the asymptotic complexities. Lastly, for s sparse vectors b⃗, above
methods can be greatly improved to depth O(log(ns)) using only
O(ns log s) ancilla qubits.

9.4 Quantum read only memory (QROM)

Given a data set {x0, · · · , xN−1} of xi with exact t-bit represen-
tations and N = 2n, we consider the task of implementing an
(n + t)-qubit operation acting as

UN : |i⟩ ⊗ |0⊗t⟩ 7→ |i⟩ ⊗ |xi⟩ . (9.24)

One way to achieve this in terms of a unitary matrix

UN

(
2n−1

∑
i=0

2t−1

∑
j=0

αij|i⟩ ⊗ |j⟩
)

=
2n−1

∑
i=0

2t−1

∑
j=0

αij|i⟩ ⊗ |j ⊕ xi⟩ . (9.25)

We are then interested in the cost of implementing UN in terms
of depth, total gate cost, and qubit space cost. Note that when
thinking of the data set {x0, · · · , x2n−1} as coming from an 2n/2 ×
2n/2 matrix A, above task corresponds to constructing the sparse
access model UA,entry oracle from Eq. (8.6), as used by QLSSs.6 6 More precisely, this corresponds

to the case of dense (non-sparse)
matrices. We abstain for now from also
implementing the non-zero position
oracle UA,pos from Eq. (8.7), which
is important for the case of sparse
matrices.

A simple way to implement UN with the use of n ancilla qubits —
called the address qubits — is via unary iteration. An example for
n = 3 with i = i0i1i2 in binary representation is depicted below

http://arxiv.org/abs/2108.06150

quantum random access memory (qram) 75

|i0⟩ • • • •

|i1⟩ • • • •

|i3⟩ • • • •

|0⊗t⟩ Ux0 Ux1 Ux2 Ux3 Ux4 Ux5 Ux6 Ux7

which goes under the name quantum read only memory (QROM).
The reason being that the circuit is hard-coded to the data set
{x0, · · · , x2n−1} via the fixed unitaries {Uxi} acting on the main,
bus qubits. The idea is to iterate over all 2n possible states of the
address register, where the j-th gate transforms the bus qubit if the
address register is in the state |j⟩. This results in a cost of O(2n)

depth, O(2n) gates, and O(n) ancilla qubits.
Unfortunately, this is not good enough yet for, e.g., QLSSs appli-

cations, where we would like to keep the depth, or in other words,
time complexity, at poly(n). In the next two sections, we present
two different schemes that achieve depth O(n), at the cost of O (2n)

many ancilla qubits and still with O (2n) total gate count.

9.5 Fanout QRAM

Motivated from classical random access memory (RAM) structures,
the simplest scheme that achieves the quantum data loading from
Eq. (9.25) in depth O(n) is fanout QRAM. Its basic building blocks
are quantum routers arranged in a binary tree, where the outputs at
one level act as the inputs on the next level.

Figure 9.2: The quantum router build-
ing block of fanout QRAM.

As depicted in Figure 9.2 the quantum router takes an incident
qubit |b⟩ coming in from the top and directs it to left or right con-
ditional on the state |a⟩ of the router (the figures in this chapter are
taken from7). The corresponding quantum circuit is 7 Connor T. Hann, Gideon Lee, S.M.

Girvin, and Liang Jiang. Resilience of
quantum random access memory to
generic noise. PRX Quantum, 2:020311,
2021

Router •
Incident × ×

Left ×
Right ×

In the following, we assume for simplicity that each element xi

is just a single bit, and follow the structure laid out in Figure 9.3 to
query an xi in the data structure:

76 quantum algorithms

• First, all routing qubits are initialized to zero and n address
qubits are set to the desired state.

• Second, all routing qubits at level k are flipped from zero to one,
depending on the corresponding k-th address qubit.

• Third, a bus qubit is prepared in the state |+⟩ = 1√
2

(
|0⟩ + |1⟩

)
and injected from the top. Following the path designated by the
router states, the bus qubit arrives at the corresponding classical
memory cell at the bottom.

• Fourth, the classical data bit xi is encoded into the bus qubit
by applying

⊗2n−1
i=0 Zxi to the output modes of all routers at the

bottom level of the tree. If xi = 1 the bus qubit is mapped to
|−⟩ = 1√

2

(
|0⟩ − |1⟩

)
, while all other qubits at the bottom are

in state |0⟩ and hence unaffected by Z. Note that because the
location of the bus is not a priori known, classically controlled Z

gates have to be applied at all bottom locations.

• Fifth, the bus qubit is routed back out of the tree, following the
same path backwards, and all routers are set back to zero.

For a structure of size n = 3, a full example circuit to query the
element x5 at the corresponding binary address 101 is given in Fig-
ure 9.4. Crucially, and as required by Eq. (9.25), this scheme equally
allows to query multiple memory elements in superposition — just
as all elements work coherently.

Ad
dr

es
s q

ub
its

Bus qubit

Classical data

Figure 9.3: Fanout QRAM data struc-
ture with n = 3 for querying the
element x5 at position 101.

As the binary tree has n layers, the depth of the scheme is O(n),
while the number of qubits and total gate count are both O(2n).
Overall, this fanout QRAM architecture works fine in theory, but
it is somewhat unpractical, as all O(2n) memory qubits have to be
kept coherent during the whole query process (even though some
of them do not take part in the routing).

In the next section, an alternative architecture is presented that
does not suffer from this weakness.

quantum random access memory (qram) 77

Figure 9.4: Fanout QRAM circuit.

9.6 Bucket-brigade QRAM

As mentioned, the fanout QRAM structure has high susceptibil-
ity to decoherence, and since the memory qubit cost of O(2n) is
typically exponentially larger than the poly(n) algorithmic qubits
needed by most algorithms employing QRAM, there is a strong
incentive to design more noise resilient QRAM structures. That
is, architectures potentially not requiring the same quantum error
correction overhead as the algorithmic qubits. This is also in anal-
ogy to classical RAM data structures, which are based on highly
specialized hardware, different from the architecture of the central
processing unit (CPU).

Such constructions are accomplished by bucket-brigade QRAM. In
their simplest form, the idea is to replace the routing qubits with
two qubits, that feature the now three relevant states, the active |0⟩
(route left) and |1⟩ (route right), as well as the inactive |w⟩ (wait).8 8 The fourth state does not matter for

our considerations. Even though we
do not ever make use of this fourth
state, any operations are defined on
the two qubits such that the overall
action is unitary.

One then initializes all routers in the |w⟩ state, and assumes that the
routing operation is trivial when the routing qubits are in the |w⟩
state.

The main algorithmic modification compared to fanout QRAM
is then that the address qubits are themselves routed into the tree
during a query. Namely, for a router state |0⟩ / |1⟩, the address

78 quantum algorithms

Ad
dr

es
s q

ub
its

Classical data

Figure 9.5: Bucket-brigage QRAM data
structure with n = 3 for querying the
element x5 at position 101.

qubits is routed left / right as before, but for the router state |w⟩,
the address qubit is swapped in, such that the state of the router
becomes |0⟩ / |1⟩. The structure of a memory query is depicted in
Figure 9.5 by means of an example.

In more detail, and again assuming that each element xi is just
a single bit, the address qubits are put into the tree one by one
through the root node. The first one is swapped into the first router,
changing the router’s state from |w⟩ to |0⟩ / |1⟩. This state then
determines the routing of the second address qubit put into the
tree, after which it is swapped into a router at the second level.
After all address qubits are loaded into the routers, the bus qubit
is routed through the tree, and the specified element xi is loaded
from classical memory (which works slightly differently than in the
fanout architecture). As the final step, the bus and address qubits
are routed back in reverse.

For a structure of size n = 3, an example circuit to query the
element x5 at the corresponding binary address 101 is given in Fig-
ure 9.6 (with the final unloading step omitted). In there, the steps
U1, U2, U3 route the address qubits into the tree, whereas U4, U5

route the bus qubit to the memory cell. You will work trough some
of the details of the construction in Exercise Sheet 12.

9.7 Extensions and caveats

In addition to the presented QROM, fanout QRAM, and bucket-
brigade QRAM architectures, there are other proposals such as
QROAM, which allows for arbitrary space versus depth trade-off in
the costs. Moreover, versions for sparse classical data sets featuring
the UA,pos oracle can also be built at significantly lower cost scaling
with the sparsity of the data set. However, this is beyond the scope
of the lecture.

In general, if one could build fault-tolerant quantum computers,

quantum random access memory (qram) 79

Address

Bus

Input

Routers

Figure 9.6: Bucket-brigade QRAM.

one could also build QRAM data structures with the same hard-
ware. However, for typical applications the space requirements
of QRAM are exponentially larger than the number of algorith-
mic qubits, and as such there is the need to develop specialized
quantum hardware for the design of QRAM circuits.9 As QRAM 9 This is also important in compari-

son with classical hardware, as, e.g.,
poly(N) CPUs allow to do matrix
multiplication in depth O(log N). Note
that when building universal quantum
computers with N qubits, one might
very well already require poly(N) clas-
sical control CPUs for managing the
quantum error correction overhead.

circuits do not require a universal set of quantum gates — for exam-
ple the bucket-brigade architectures exclusively employs controlled
swap gates — there are then indications that there is some inbuilt
noise resistance. This could lead to lower quantum error correction
overheads than required for universal circuits, and is an impor-
tant research direction to realize the power of quantum algorithms
requiring QRAM.10 10 Connor T. Hann, Gideon Lee, S.M.

Girvin, and Liang Jiang. Resilience of
quantum random access memory to
generic noise. PRX Quantum, 2:020311,
2021

Lastly, it should also be said that given current quantum hard-
ware proposals, the promise of full parallelization with depth as
the only relevant metric for time complexity is optimistic to say the
least.

10
Quantum singular value transform (QSVT)

10.1 Motivation

In this lecture, we have treated various quantum algorithms, rang-
ing from the quantum Fourier transform (Chapter 4), to quantum
phase estimation (Chapters 5 and 7), to Hamiltonian simulation
(Chapter 6), to linear system solvers (Chapter 8). Further, we have
also seen different ways of loading the relevant input to these al-
gorithms into a quantum computer (Chapter 9). While all these
different methods are at first unrelated and developed at hoc, they
have recently been shown to be part of a general framework termed
quantum singular value transformation (QSVT), which emerged from a
longer series of papers.1 1 András Gilyén, Yuan Su, Guang Hao

Low, and Nathan Wiebe. Quantum
singular value transformation and
beyond: Exponential improvements
for quantum matrix arithmetics. In
Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Com-
puting, STOC 2019, page 193, 2019

The starting point is the simple realization that quantum me-
chanics only allows to encode data into quantum states and process
them via unitary operations — while general data is given by gen-
eral matrices and one wants to process these with general functions
(and might even need coherent access to these non-unitary trans-
formations). The QSVT framework allows to embed any data of
non-unitary matrices into larger unitary matrices, represented by
an efficient quantum circuit, and then do arithmetics such as im-
plementing general matrix functions. Crucially, all of the aforemen-
tioned quantum algorithms can then be understood as special cases
of this framework. Notably, for some tasks, such as, e.g., Hamilto-
nian simulation and quantum linear system solvers, this also leads
to conceptually different implementations and improved complexi-
ties.

Note that we refrain in the following from giving any proofs or
even full technical statements. Rather, we just briefly pitch the main
results, and provide follow-up references for the interested reader.

10.2 Block encoding data access

A block encoding of a complex M × M matrix A is given by a unitary
matrix UA with2 2 Non-square matrices can easily be

treated as well.

UA =

(
A/α ·
· ·

)
, (10.1)

82 quantum algorithms

where the sub-matrices labelled (·) are irrelevant as long as UA is
unitary, and α is a normalization factor (which is in general neces-
sary).

More precisely, we say that the unitary UA is a (α, a)-block encod-
ing of the complex M × M matrix A if

A = α ·
(
⟨0|⊗a ⊗ 1M

)
UA

(
|0⟩⊗a ⊗ 1M

)
, (10.2)

where α ≥ ∥A∥∞, and a denotes the number of ancilla qubits used
for the embedding.

Additionally, in practice one sometimes needs more general
approximate (α, a, ε)-block encodings, which are defined as∥∥A − α ·

(
⟨0|⊗a ⊗ 1M

)
UA

(
|0⟩⊗a ⊗ 1M

)∥∥
∞ ≤ ε , (10.3)

where the approximation holds up to ε ≥ 0. Given block encodings
UA and UB, one can easily give efficient constructions of block
encodings UA+B of A + B and UAB of AB (with essentially additive
costs).3 3 András Gilyén, Yuan Su, Guang Hao

Low, and Nathan Wiebe. Quantum
singular value transformation and
beyond: Exponential improvements
for quantum matrix arithmetics. In
Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Com-
puting, STOC 2019, page 193, 2019

Now, how to construct block encodings UA heavily depends on
the structure of the matrix A and how access to it is given (which in
general requires QRAM). Some example constructions include:

• A Gram matrix A with (A)ij = ⟨ψi|ϕj⟩ can be (1, a, 0)-block
encoded with state preparation unitaries

UL

(
|0⊗a⟩ ⊗ |i⟩

)
= |ψi⟩ and UR

(
|0⊗a⟩ ⊗ |j⟩

)
= |ϕj⟩ (10.4)

via UA = U†
RUL

• An s(A) row and column sparse matrix A of dimension 2n × 2n

can be (s(A), n + 3, ε)-block encoded by querying the sparse
oracles from Eqs. (8.6) – (8.7) a constant number of times.4 4 Yuval R. Sanders, Guang Hao Low,

Artur Scherer, and Dominic W. Berry.
Black-box quantum state preparation
without arithmetic. Physical Review
Letters, 122:020502, 2019

• A linear combination of unitaries A = ∑l∈L αl Pl as given in
Eq. (6.40) can be (∥⃗α∥1, log L, 0)-block encoded by using the
unitaries V and W from Eqs. (6.41) and (6.42), respectively, via
UA = V†WV.

• When A has some algebraic or arithmetic structure, various
refined constructions are known.5 5 Daan Camps, Lin Lin, Roel Van

Beeumen, and Chao Yang. Explicit
quantum circuits for block encodings
of certain sparse matrices. 2022. URL
http://arxiv.org/abs/2203.10236;
and Christoph Sunderhauf, Earl
Campbell, and Joan Camps. Block-
encoding structured matrices for data
input in quantum computing. 2023.
URL http://arxiv.org/abs/2302.

10949

Note that block encodings of general (non-sparse) M × M matrices
will require O

(
M2) qubits in order to achieve O(log M) depth cost

(cf. Chapter 9).

10.3 Transformation of block encodings

The QSVT is essentially a quantum circuit that takes as an input
a block encoding UA of a matrix A and outputs a block encoding
UAd of the matrix Ad for d ∈ N. The cost is roughly given by O(d)

http://arxiv.org/abs/2203.10236
http://arxiv.org/abs/2302.10949
http://arxiv.org/abs/2302.10949

quantum singular value transform (qsvt) 83

applications of UA and O(d) further elementary gates, as well as a
constant number of ancilla qubits. General function transformations
f (A) other than monomials Ad can be achieved by implementing
polynomial approximations of the function f (·) on the interval of
reference.

In order to make this more precise, we first need to define
what it means to apply general functions to matrices. This can
be achieved with the singular value decomposition. For a complex
M × M matrix A, it is defined as factorization of A such that

A = UΣV† , (10.5)

where U and V are unitary matrices, and Σ is a diagonal matrix
composed of the non-negative real singular values {σi}M

i=1 that are
uniquely determined by A. A scalar function f : R → C is then
lifted to a matrix function via

f (A) = U f (Σ)V† , (10.6)

where f (Σ) is the diagonal matrix composed of the entries { f (σi)}M
i=1.

Note that if A is Hermitian, then U = V and the singular value
decomposition corresponds to the eigendecomposition of A. For
simplicity we restrict in the following to Hermitian matrices A with
M = 2m, which is then also simply known as the quantum eigenvalue
transform (QET).

Now, for a real, definite parity polynomial

pd(A) : [−1, 1] → [−1, 1] with sup
x∈[−1,1]

|p(x)| ≤ 1 (10.7)

of degree d, the QSVT circuit takes the exact form

H exp(iθ1Z) exp(iθ2Z) · · · exp(iθdZ) H

UA U†
A

· · ·

· · ·

· · ·

· · ·

· · ·

|0⟩⊗a

featuring one ancilla qubit, and where the rotation angle set {θ1, · · · , θd}
specific to pd(A) has to be classically pre-computed. This can be
done efficiently, both in theory and in practice.6 Moreover, general 6 Jeongwan Haah. Product decom-

position of periodic functions in
quantum signal processing. 2018. URL
http://arxiv.org/abs/1806.10236;
and Rui Chao, Dawei Ding, An-
dras Gilyen, Cupjin Huang, and
Mario Szegedy. Finding angles for
quantum signal processing with
machine precision. 2020. URL
http://arxiv.org/abs/2003.02831

polynomials p(A) : [−1, 1] → [−1, 1] with supx∈[−1,1] |p(x)| ≤ 1 can
be handled by taking linear combinations of unitaries. Overall, one
finds the following theorem.

http://arxiv.org/abs/1806.10236
http://arxiv.org/abs/2003.02831

84 quantum algorithms

Let UA be a (α, a)-block encoding of a Hermitian matrix A and

p : [−1, 1] →
{

c ∈ C : |c| ≤ 1
4

}
(10.8)

be a degree d polynomial. Then, QSVT gives a (α,O(a))-block
encoding Up(A) of p(A) using

• d applications of UA and U†
A

• one controlled application of UA

• O(ad) other elementary quantum gates.

The proof requires advanced tools from quantum computing and
is based on ideas from quantum signal processing and qubitization. We
refer the interested reader to the review article.7 7 John M. Martyn, Zane M. Rossi,

Andrew K. Tan, and Isaac L. Chuang.
Grand unification of quantum al-
gorithms. PRX Quantum, 2:040203,
2021

10.4 Example polynomials

In order to use the QSVT in applications, one needs to find low de-
gree polynomial approximations of functions on relevant intervals.
For this, the theory of Chebyshev polynomials is highly useful.8 8 Sushant Sachdeva and Nisheeth K.

Vishnoi. Faster algorithms via approxi-
mation theory. Foundations and Trends®
in Theoretical Computer Science, 9:125,
2014

A most transparent example are quantum linear system solvers
(Chapter 8). Here, after appropriate normalization, the relevant
function is the inverse function over the interval

[−1,−κ(A)−1] ∪ [κ(A)−1, 1] , (10.9)

where κ(A) denotes the condition number of the matrix A from
the linear system Ax⃗ = b⃗. Using advanced tools from polyno-
mial approximation theory it can be shown that a degree d =

O
(
κ2 log(κ/ε)

)
is sufficient for an ε-approximation.9 This out- 9 Andrew M. Childs, Robin Kothari,

and Rolando D. Somma. Quantum
algorithm for systems of linear equa-
tions with exponentially improved
dependence on precision. SIAM Journal
on Computing, 46:1920, 2017

performs our basic QLSS from Section 8.4, but still loses against the
adiabatic solvers mentioned in Section 8.5 that have a O (κ log(1/ε))

query complexity to UA.10

10 Using variable time quantum amplitude
amplification the QSVT based QLSS can
be boosted to O (κ log(κ/ε)).

Another prominent example is Hamiltonian simulation (Chapter
6). Here, after appropriate normalization and other technical sim-
plifications, the complex exponential function is sought-after and
one writes

exp(ix) = cos(x) + i sin(x) , (10.10)

where each term can now be separately approximated in terms
of their truncated Jacobi-Anger expansion. This then leads to the
optimal Hamiltonian simulation algorithm (up to a constant) with
query complexity to the block encoding UH of the Hamiltonian H
as

O

|J|t +
log
(
ε−1)

log
(

e +
log(ε−1)

|J|t

)
 (10.11)

quantum singular value transform (qsvt) 85

for simulation time t — as claimed in Section 6.5.
Note that for both of these examples, the QSVT circuits are con-

ceptually different from what we previously discussed in the lec-
ture. What quantum circuits perform best in the early fault-tolerant
regime is a question of active research.

Bibliography

Scott Aaronson. Read the fine print. Nature Physics, 11:291, 2015.

Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum
computation with constant error rate. SIAM Journal on Computing,
38:1207, 2008.

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan
Xu, Zixuan Xu, and Renfei Zhou. More asymmetry yields faster
matrix multiplication, 2024. URL http://arxiv.org/abs/2404.

16349.

Boaz Barak and Sanjeev Arora. Computational Complexity: A Modern
Approach. Cambridge University Press, 2007.

Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin
Kothari, and Rolando D. Somma. Simulating Hamiltonian dy-
namics with a truncated Taylor series. Physical Review Letters, 114:
090502, 2015.

Earl Campbell. Random compiler for fast Hamiltonian simulation.
Physical Review Letters, 123:070503, 2019.

Daan Camps, Lin Lin, Roel Van Beeumen, and Chao Yang. Explicit
quantum circuits for block encodings of certain sparse matrices.
2022. URL http://arxiv.org/abs/2203.10236.

Rui Chao, Dawei Ding, Andras Gilyen, Cupjin Huang, and Mario
Szegedy. Finding angles for quantum signal processing with
machine precision. 2020. URL http://arxiv.org/abs/2003.

02831.

Chi-Fang Chen, Michael J. Kastoryano, and András Gilyén. An
efficient and exact noncommutative quantum Gibbs sampler.
2023. URL http://arxiv.org/abs/2311.09207.

Andrew M. Childs, Robin Kothari, and Rolando D. Somma. Quan-
tum algorithm for systems of linear equations with exponentially
improved dependence on precision. SIAM Journal on Computing,
46:1920, 2017.

Andrew M. Childs, Yuan Su, Minh C. Tran, Nathan Wiebe, and
Shuchen Zhu. Theory of Trotter error with commutator scaling.
Physical Review X, 11:011020, 2021.

http://arxiv.org/abs/2404.16349
http://arxiv.org/abs/2404.16349
http://arxiv.org/abs/2203.10236
http://arxiv.org/abs/2003.02831
http://arxiv.org/abs/2003.02831
http://arxiv.org/abs/2311.09207

88 quantum algorithms

B. David Clader, Alexander M. Dalzell, Nikitas Stamatopoulos,
Grant Salton, Mario Berta, and William J. Zeng. Quantum re-
sources required to block-encode a matrix of classical data. IEEE
Transactions on Quantum Engineering, 3:1, 2022.

Stephen A. Cook. The complexity of theorem-proving procedures.
In Proceedings Symposium on Theory of Computing, STOC ’71, page
151, 1971.

James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Mathematics of Computation,
19:297, 1965.

Pedro C.S. Costa, Dong An, Yuval R. Sanders, Yuan Su, Ryan Bab-
bush, and Dominic W. Berry. Optimal scaling quantum linear-
systems solver via discrete adiabatic theorem. PRX Quantum, 3:
040303, 2022.

Alexander M. Dalzell. A shortcut to an optimal quantum linear
system solver. 2024. URL http://arxiv.org/abs/2406.12086.

Alexander M. Dalzell, B. David Clader, Grant Salton, Mario Berta,
Cedric Yen-Yu Lin, David A. Bader, Nikitas Stamatopoulos, Mar-
tin J. A. Schuetz, Fernando Brandão, Helmut G. Katzgraber, and
William J. Zeng. End-to-end resource analysis for quantum
interior-point methods and portfolio optimization. PRX Quantum,
4:040325, 2023a.

Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bi-
enias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J.
Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant
Salton, Samson Wang, and Fernando Brandão. Quantum algo-
rithms: A survey of applications and end-to-end complexities.
2023b. URL http://arxiv.org/abs/2310.03011.

Richard P. Feynman. Simulating physics with computers. Interna-
tional Journal of Theoretical Physics, 21:467, 1981.

Sevag Gharibian and François Le Gall. Dequantizing the quan-
tum singular value transformation: Hardness and applications
to quantum chemistry and the quantum PCP conjecture. In Pro-
ceedings Symposium on Theory of Computing, STOC 2022, page 19,
2022.

András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe.
Quantum singular value transformation and beyond: Exponential
improvements for quantum matrix arithmetics. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, page 193, 2019.

Lov K. Grover. A framework for fast quantum mechanical algo-
rithms. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, pages 53–62, 1998.

http://arxiv.org/abs/2406.12086
http://arxiv.org/abs/2310.03011

bibliography 89

Jeongwan Haah. Product decomposition of periodic functions in
quantum signal processing. 2018. URL http://arxiv.org/abs/

1806.10236.

Connor T. Hann, Gideon Lee, S.M. Girvin, and Liang Jiang. Re-
silience of quantum random access memory to generic noise.
PRX Quantum, 2:020311, 2021.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical Review Letters,
103:150502, 2009.

David Harvey and Joris van der Hoeven. Integer multiplication in
time O(nlog n). Annals of Mathematics, 193(2):563, 2021.

A Yu Kitaev. Quantum computations: algorithms and error correc-
tion. Russian Mathematical Surveys, 52:1191, 1997.

Rolf Landauer. Irreversibility and heat generation in the computa-
tional process. IBM Journal of Research and Development, 5(3):183,
1961.

Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins,
Jarrod R. McClean, Nathan Wiebe, and Ryan Babbush. Even more
efficient quantum computations of chemistry through tensor
hypercontraction. PRX Quantum, 2:030305, 2021.

Seunghoon Lee et al. Evaluating the evidence for exponential quan-
tum advantage in ground-state quantum chemistry. Nature Com-
munications, 14:1952, 2023.

Lin Lin and Yu Tong. Heisenberg-limited ground-state energy
estimation for early fault-tolerant quantum computers. PRX
Quantum, 3:010318, 2022.

Seth Lloyd. Universal quantum simulators. Science, 273:1073, 1996.

John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L.
Chuang. Grand unification of quantum algorithms. PRX Quan-
tum, 2:040203, 2021.

Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Ben-
jamin, and Xiao Yuan. Quantum computational chemistry. Re-
views of Modern Physics, 92:015003, 2020.

Thomas E. O’Brien, Brian Tarasinsk, and Barbara M. Terhal. Quan-
tum phase estimation of multiple eigenvalues for small-scale
(noisy) experiments. New Journal of Physics, 21:023022, 2019.

John Preskill. Quantum Computing in the NISQ era and beyond.
Quantum, 2:79, 2018.

Sushant Sachdeva and Nisheeth K. Vishnoi. Faster algorithms via
approximation theory. Foundations and Trends® in Theoretical
Computer Science, 9:125, 2014.

http://arxiv.org/abs/1806.10236
http://arxiv.org/abs/1806.10236

90 quantum algorithms

Yuval R. Sanders, Guang Hao Low, Artur Scherer, and Dominic W.
Berry. Black-box quantum state preparation without arithmetic.
Physical Review Letters, 122:020502, 2019.

A. Schönhage and V. Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7:281, 1971.

Changpeng Shao and Ashley Montanaro. Faster quantum-inspired
algorithms for solving linear systems. ACM Transactions on Quan-
tum Computing, 3:4, 2022.

Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Review,
41(2):303, 1999.

Daniel R. Simon. On the power of quantum computation. SIAM
Journal on Computing, 26:1474, 1997.

Thomas Strohmer and Roman Vershynin. A randomized Kacz-
marz algorithm with exponential convergence. Journal of Fourier
Analysis and Applications, 15:262, 2009.

Xiaoming Sun, Guojing Tian, Shuai Yang, Pei Yuan, and Shengyu
Zhang. Asymptotically optimal circuit depth for quantum state
preparation and general unitary synthesis. 2021. URL http:

//arxiv.org/abs/2108.06150.

Christoph Sunderhauf, Earl Campbell, and Joan Camps. Block-
encoding structured matrices for data input in quantum comput-
ing. 2023. URL http://arxiv.org/abs/2302.10949.

K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Ver-
straete. Quantum Metropolis sampling. Nature, 471:87, 2011.

Kianna Wan, Mario Berta, and Earl T. Campbell. Randomized
quantum algorithm for statistical phase estimation. Physical
Review Letters, 129:030503, 2022.

Samson Wang, Sam McArdle, and Mario Berta. Qubit-efficient ran-
domized quantum algorithms for linear algebra. PRX Quantum,
5:020324, 2024.

http://arxiv.org/abs/2108.06150
http://arxiv.org/abs/2108.06150
http://arxiv.org/abs/2302.10949

	Overview
	Introduction
	Organization
	Classical circuit model
	Computational complexity theory

	Quantum circuit model
	Quantum systems
	Quantum bits and quantum gates
	Quantum measurements
	Remarks on quantum error correction

	Quantum query complexity
	Setting
	Deutsch's problem
	Deutsch-Josza problem
	Simon's problem
	Other oracle based quantum algorithms

	Quantum Fourier transform
	Discrete Fourier transform
	Quantum circuit
	Remarks on period finding and Shor's algorithm

	Quantum phase estimation
	Problem setting
	Quantum circuit
	Variations and caveats

	Hamiltonian simulation
	Task
	Commuting case
	Trotter based methods
	Linear combination of unitary based methods
	State-of-the-art methods and caveats

	Ground state energy estimation
	Task
	Mapping to qubit form
	Quantum phase estimation
	Quantum state preparation and other bottlenecks

	Quantum linear system solver (QLSS)
	Task and classical landscape
	Quantum task
	Quantum data access
	Basic quantum linear system solver
	State-of-the-art methods and caveats

	Quantum random access memory (QRAM)
	Motivation
	Quantum state preparation: Basic ideas
	Quantum state preparation: Circuits
	Quantum read only memory (QROM)
	Fanout QRAM
	Bucket-brigade QRAM
	Extensions and caveats

	Quantum singular value transform (QSVT)
	Motivation
	Block encoding data access
	Transformation of block encodings
	Example polynomials

	Bibliography

