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Introduction. In a series of recent works, a new integral formula for Umegaki’s quantum relative
entropy was discovered. Originally found by Frenkel [12] and later refined by Jenčova [18] and
Hirche and Tomamichel [15], it can be written for states 𝜌, 𝜎 as
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∫ ∞
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where Umegaki’s quantum relative entropy [27] is given by 𝐷(𝜌∥𝜎) ..= Tr 𝜌
(
log 𝜌 − log 𝜎

)
, and the

hockey-stick divergences are defined by 𝐸𝛾(𝜌∥𝜎) ..= Tr (𝜌 − 𝛾𝜎)+. The quantum relative entropy can
be seen as a parent quantity for quantum entropies, as other information measures such as the
von Neumann entropy, the conditional entropy, and the mutual information can all be expressed
in terms of it. Based on the integral representation (1) and basic mathematical properties of the
hockey-stick divergences, we present a conceptually novel and direct quantum technique to derive
improved uniform continuity bounds for information measures based on quantum entropy.

Our main general result is a dimension-independent semi-continuity relation for the quantum
relative entropy with respect to the first argument. Using it, we derive a wealth of results with
numerous applications throughout quantum information theory: (1) a tight continuity relation for
the conditional entropy in the case where the two states have equal marginals on the conditioning
system, which resolves a conjecture by Wilde [32, Eq. (58)] in this special case; (2) a stronger version of
the Fannes–Audenaert inequality on quantum entropy; (3) better estimates on the quantum capacity
of approximately degradable channels; (4) an improved continuity relation for the entanglement cost;
(5) general upper bounds on asymptotic transformation rates in infinite-dimensional entanglement
theory; and (6) a proof of a conjecture due to Christandl, Ferrara, and Lancien on the continuity of
‘filtered’ relative entropy distances [7, Conjecture 7].

Main result. Our bound can be seen as a fully quantum extension of Csiszár’s tight continuity of
entropy: For two probability distributions 𝑃𝑋 , 𝑄𝑋 on a finite alphabet X with 1

2 ∥𝑃𝑋 − 𝑄𝑋 ∥1 ≤ 𝜀 ≤
1 − 1

|X | in variational distance, one has that��𝐻(𝑋)𝑃 − 𝐻(𝑋)𝑄
�� ≤ 𝜀 log (|X | − 1) + ℎ2(𝜀) , (2)

where 𝐻(𝑋)𝑃 ..= −∑
𝑥∈X 𝑃(𝑥) log𝑃(𝑥) denotes the Shannon entropy, and ℎ2(𝑝) ..= 𝑝 log 1

𝑝 + (1 −
𝑝) log 1

1−𝑝 is the binary entropy function. Namely, the general form of our main result is as follows.

Theorem 1. For states 𝜌, 𝜎, 𝜔 on the same system, we have that
𝐷(𝜌∥𝜔) − 𝐷(𝜎∥𝜔) ≤ 𝜀 log(𝑀 − 1) + ℎ2(𝜀) , (3)

whenever 1
2 ∥𝜌 − 𝜎∥1 ≤ 𝜀 ≤ 1 − 1

𝑀 with 𝑀 any number such that the operator inequality 𝜌 ≤ 𝑀𝜔,
meaning that 𝑀𝜔 − 𝜌 is positive semi-definite, holds true.

Note that the left-hand side of (3) does not contain an absolute value. This feature, which makes
ours a semi-continuity bound rather than a plain continuity bound like (2), is rather fundamental,
as the expression on the left-hand side can happen to diverge to −∞. Eq. (3) is in fact tight, in the
sense that for all 𝑀 ≥ 1 and 𝜀 ∈

[
0, 1 − 1

𝑀

]
one can find a triple of states 𝜌, 𝜎, 𝜔 obeying the above

conditions and saturating (3).

Proof ideas. The conceptual novelty of our approach is that it works directly at the level of quantum
entropies, without first operating a reduction to the classical case. This is on the one hand different
from all previous approaches to prove quantum (unconditional) extensions of (2) as in [3, 10, 33], and
on the other hand it gives improved bounds compared to the only previous quantum approach due
to Alicki–Fannes [2] for the conditional case — that has been explored extensively for information
measures in quantum information theory (see, e.g., [4]). The proof hinges on the new integral
representation (1) and makes extensive use of various properties of the hockey-stick divergences
𝐸𝛾(𝜌∥𝜎), such as their variational representation, the monotonicity in 𝛾, their relation to the max-
relative entropy, the triangle inequalities, as well as the convexity in 𝛾 (see, e.g., [15] for a reference).
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Crucially, the integrals from (1) have to be split up into different parts of which each is estimated
differently.

Implications. We immediately get an improved Fannes–Audenaert inequality, treating a quantum
extension of (2).

Corollary 2. For states 𝜌, 𝜎 with 1
2 ∥𝜌− 𝜎∥1 ≤ 𝜀 ≤ 1− 1

𝑑 𝜆max(𝜎) on a 𝑑-dimensional quantum system
with 𝜆max(𝜎) denoting the maximal eigenvalue of 𝜎, we have

𝑆(𝜌) − 𝑆(𝜎) ≤ 𝜀 log (𝑑 𝜆max(𝜎) − 1) + ℎ2(𝜀) . (4)

The next logical step is to treat conditional quantum entropies. For bipartite quantum states, we
are able to give a tight continuity bound on the conditional entropy 𝐻(𝐴|𝐵)𝜌 ..= 𝐻(𝐴𝐵)𝜌 − 𝐻(𝐵)𝜌
that applies to all pairs of states 𝜌𝐴𝐵 , 𝜎𝐴𝐵 with equal marginals on 𝐵, i.e., such that 𝜌𝐵 = 𝜎𝐵. By
a fortunate coincidence, precisely this special case that turns out to have wide applicability in
quantum Shannon theory. (In fact, we could identify only one problem where one needs a general
statement, the continuity of the squashed entanglement.) To proceed we need the mixed state
Schmidt number [26], SN(𝜌𝐴𝐵) ..= inf𝜌=∑𝑖 𝑝𝑖𝜓𝑖

max𝑖 SN
(
|𝜓𝑖⟩𝐴𝐵

)
, where the minimization is over

pure state convex decompositions 𝜌𝐴𝐵 =
∑

𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |𝐴𝐵, and SN
(
|𝜓𝑖⟩𝐴𝐵

)
denotes the rank of the

reduced state Tr𝐵 |𝜓𝑖⟩⟨𝜓𝑖 |𝐴𝐵.

Corollary 3. For states 𝜌𝐴𝐵 , 𝜎𝐴𝐵 with 1
2 ∥𝜌 − 𝜎∥1 ≤ 1 − 1

|𝐴| SN(𝜌𝐴𝐵) and 𝜌𝐵 = 𝜎𝐵, we have

𝐻(𝐴|𝐵)𝜌 − 𝐻(𝐴|𝐵)𝜎 ≤ 𝜀 log
(
|𝐴| · SN(𝜌𝐴𝐵) − 1

)
+ ℎ2(𝜀) , (5)

where |𝐴| denotes the dimension of the 𝐴-system.

This pleasantly reproduces the tight classical result [1] as well as the corresponding quantum-
classical bound [32] (both of which, however, equally hold even when 𝜌𝐵 ≠ 𝜎𝐵). For the fully
quantum case we immediately get��𝐻(𝐴|𝐵)𝜌 − 𝐻(𝐴|𝐵)𝜎

�� ≤ 𝜀 log
(
|𝐴|2 − 1

)
+ ℎ2(𝜀) , (6)

which proves the quantum conjecture of Wilde [32] for the special case of 𝜌𝐵 = 𝜎𝐵. We note that (5) is
then exactly tight in every (finite) dimension, and as such it improves on the previous state-of-the-art
Alicki–Fannes–Winter bound [33],��𝐻(𝐴|𝐵)𝜌 − 𝐻(𝐴|𝐵)𝜎

�� ≤ 𝜀 log |𝐴|2 + (1 + 𝜀) · ℎ2

( 𝜀
1 + 𝜀

)
. (7)

Applications. Plentiful of correlation measures in quantum information theory are based on quan-
tum entropy, and, interestingly, in many cases the marginal constraint 𝜌𝐵 = 𝜎𝐵 is naturally fulfilled.
By applying our results and expanding our proof techniques, we get a plethora of tightened con-
tinuity estimates for operationally relevant quantities, solving various conjectures in the literature.
These include:

1. Entanglement cost. For bipartite states 𝜌𝐴𝐵, a fundamental measure of entanglement is given
by the entanglement cost 𝐸𝑐(𝜌), i.e., the minimal number of units of entanglement (‘ebits’) that are
required to prepare each copy of 𝜌𝐴𝐵 via local operations assisted by classical communication in the
many-copy limit. The quantity 𝐸𝑐 can be calculated as [14]

𝐸𝑐(𝜌) = lim
𝑛→∞

1
𝑛
𝐸 𝑓

(
𝜌⊗𝑛 ) , with 𝐸 𝑓 (𝜌) ..= inf

{𝑝𝑥 ,𝜓𝑥}𝑥 :
∑

𝑥 𝑝𝑥𝜓
𝐴𝐵
𝑥 = 𝜌𝐴𝐵

∑
𝑥

𝑝𝑥 𝑆
(
𝜓𝐴

𝑥

)
, (8)

and we then give improved continuity relations for 𝐸𝑐(𝜌). Contrary to relations for 𝐸 𝑓 (𝜌), the crucial
point is that we need a quantum conditional system as in Corollary 3 to control the regularization.

2. Approximate degradability. The capacity 𝑄(N ) of channels for sending quantum information
is in general unknown, but upper bounds can be found using the concept of so-called approximate
degradabile channels [19, 25]. As continuity plays a central quantitative role in such estimates,
we improve on previous such bounds and, e.g., show that for an 𝜀-degrading channel for N with
𝜀 ≤ 1 − 1

|𝐸 |2 , where |𝐸 | is the dimension of the environment of a Stinespring dilation of N , we have

𝐼𝑐(N ) ≤ 𝑄(N ) ≤ 𝐼𝑐(N ) + 𝜀 log
[ (
|𝐸 | − 1)2(|𝐸 | + 1)

]
+ 2ℎ2(𝜀) . (9)



Here, 𝐼𝑐(N ) denotes the single-letter coherent information of the channel. We further note that our
methods can be combined with our recent improvement, such as, e.g., [17], to arrive at the overall
tightest known bounds.
3. Filtered entropies. We completely resolve a conjecture of Christandl, Ferrara, and Lancien [7,
Conjecture 7]. Namely, we can quantitatively relate under minimal assumptions the continuity of so-
called filtered relative entropy distances to the corresponding filtered one-norm distances. Whereas
this property is natural to expect, it evaded previous proof techniques, and on a technical level we
need to derive an additional lemma to bound the filtered relative entropy distance to the next free
states in resource theories (inspired from [21, Proposition 3]).
4. Transformation rates for infinite-dimensional systems. We extend known result in entangle-
ment theory to the infinite-dimensional setting and show that the asymptotic transformation rate of
bipartite quantum states 𝜌𝐴𝐵 → 𝜎𝐴′𝐵′, i.e. the maximum rate of production of copies of 𝜎 that can be
achieved by consuming copies of 𝜌𝐴𝐵 and using only local operations and classical communication
(LOCC) [6], is upper bounded as

𝑅LOCC(𝜌 → 𝜎) ≤
𝐸∞
𝑅
(𝜌)

𝐸∞
𝑅
(𝜎) , (10)

where the right-hand side features the regularized relative entropy of entanglement [28, 29]. Cru-
cially, this works under the minimal assumption that logarithmic robustness of entanglement [9, 24,
31] of the target stated is finite. The difficulty with (10) is that its standard proof [16, XV.E.2] makes
use of asymptotic continuity, a strong form of continuity that does not apply to infinite-dimensional
systems. Our main contribution in this section is to generalize (10) to the infinite-dimensional setting,
thus avoiding the ‘asymptotic continuity catastrophe’ described in [11]. This is possible because our
fundamental inequality (3) is dimension independent.

Discussion. We presented a flexible and powerful novel proof technique for deriving continuity
bounds for correlation measures in quantum information theory. Whereas improvements such as
from (6) to the exactly tight (7) are pleasing and have various applications in quantum information
theory, we believe that the conceptual strength and novelty of our submission lies in particular in
our fully quantum approach, based on Frenkel’s integral representation. There are also plentiful of
natural follow-up questions to explore. First and foremost, we would like to get rid of the marginal
constraint in Corollary 3, which, however, is already highly non-trivial classically [1]. Starting from
classical considerations, better understanding quantum conditional majorization appears crucial [5,
13, 30] and it does not seem to be enough to work with divergence centers (as previously done in the
Alicki–Fannes approach [22]). More generally, we might ask about a tight continuity relation for the
mutual information 𝐼(𝐴 : 𝐵)𝜌 ..= 𝐻(𝐴)𝜌 − 𝐻(𝐴|𝐵)𝜌, which to the best of our knowledge is even open
classically. We might conjecture that��𝐼(𝐴 : 𝐵)𝜌 − 𝐼(𝐴 : 𝐵)𝜎

�� ?
≤ 𝜀 log

(
min

{
|𝐴|2 , |𝐵|2

}
− 1

)
+ ℎ2(𝜀) , (11)

which would the lead to provably tight bounds on channel capacities, improving on [20, 23]. Exten-
sions to conditional mutual information would be relevant for squashed entanglement [2, 8, 23, 33].
Further, it would lead to (even more) improved approximate degradability bounds on channel ca-
pacities in the spirit of [19, 25]. Next, for infinite-dimensional extension of our main Theorem 1 it
seems crucial to give a smoothed max-relative entropy version to improve on finite-energy bounds
from [33, 34]. Lastly, and similarly as for the Alicki–Fannes technique, one might explore extensions,
e.g., to Rényi divergences [4].
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