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Problem: Ground state energy estimation

e Given n-qubit Hamiltonian
H := Y7_, a;P; with P, n-qubit Paulis

and one-norm A = lellall, together with efficiently preparable n-qubit
ansatz state p with overlap

(Polpldpe) =1 >0

for ground state |y ){(po| with energy E,

e Goal: Compute estimate E, with precision ‘E"O — Eo‘ <A



Goals for early fault-tolerance scheme

1. Minimize number of qubits needed — only one ancilla
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2. Independent of the number L of Pauli terms in H — instead, depending
onone-normA < L

3. Trade-off gate versus sample complexity
4. Decrease error by solely taking more samples



Main Result



Algorithm ground state energy estimation

e Output E, with ‘E"O — EO‘ < A with probability 1 — ¢ by employing

Csample — 6 (7’] _2) [= 0 (77‘210g2 (AA‘llog(n‘1))log(€‘1log(AA‘1)))]

quantum circuits on n + 1 qubits, each using one copy of p and

C

gate — G(AZA_Z) |= 0(2247%10g?(n™h))]

single-qubit Pauli rotations exp(i0P;)

* Plus: Clifford gates — generated by CNOT, H, and S (Paulis)



Complexity ground state energy estimation

* n qubit Hamiltonian, n + 1 qubits with quantum complexities

independent of L:

C

gate — 6(/12A_2) for Csample — 5(77_2)

* Randomized algorithm with classical pre- and post-processing

 Comparison state-of-the-art qubitization based approach:

Gate complexity O(v/LAA™Y) for O(VL) qubits = total O(LAA™Y)

[Lee et al., PRX Quantum (2021)]



Basic idea

e Cumulative distribution function
(CDF) relative to p:

C(x) = Tr|pls,]

* Evaluate C(x) from quantum
routine?

* Eigenvalue thresholding

* Give ground state energy
estimate E, via binary search

[Lin & Tong, PRX Quantum (2022)]
[Martyn et al., PRX Quantum (2021)]



Quantum routine to evaluate CDF



Workhorse A: Hadamard test

* Input: n-qubit state p together with n-qubit unitary U
* Circuit:

|0) —— HAD T G —{HAD AN {+1

p —+ U

 Output: unbiased estimate of Tr[pU] from

G=I = E[X]=mRe(tz[pU])
G=5" = E[X]=Im(r[pU])

if |0)
if [1)



Workhorse B: Importance sampling

* Estimate linear combination Zj ajTr[pUj] for unitaries U; with a; > 0 and

normalization A := 2, ; a;

* Sample j with probability a; - A~'and perform Hadamard test on (p, Uj):

|0) —— HAD

G

HAD

p —+

]

A

= estimate of tr|pU;]

* Take average of samples, number of required is [4%c ~4] for variance ¢ > 0

* Expected gate complexity becomes A~ - Z]- ajCOST(C — Uj)



Towards guantum implementation of CDF

* Normalize Hamiltonian with ¢ - ||H||s < c - A to put spectrum in [—%, +§]

* CDF C(x) = Tr|pll.,] = (O * p)(x) from convolution with Heaviside 0(x):

= X




CDF via Fourier series

* Replace Heaviside ©(x) by finite Fourier series F(x) = ). jes F}-eijx
* Approximate CDF:
CO) ~ (p+ () = ) Frel* - Tr{pelts]

JES
with runtimes t; = j X normalization

 Hadamard test + importance sampling + Hamiltonian simulation:

0) ——{HAD I G — HAD A

p / 6itj H

[Lin & Tong, PRX Quantum (2022)]




Fourier series lemma (Heaviside function)
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* Improved Fourier series approximation of Heaviside function

 Technical contribution:

Gate complexity for precision A > 0 from 0(A™2log?(A™1)) to 0(A™2)

[Lin & Tong, PRX Quantum (2022)]
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Hadamard test on Fourier series
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C(x) =~ z Fie* . Tr[pe'tif]
7S

* Implement Hamiltonian simulation unitary U; = e'til for H = Y a P

* Independent of L? Technical contribution:

K
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novel random compiler lemma (Hamiltonian simulation)

>
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Versus previous random compiler:
[Campbell, PRL (2019)]



Random compiler lemma (Hamiltonian simulation)

* For e with H = Y I, a;P;, we give linear combination of unitaries (LCU) et =

Y. bi U such that:

|0) ——HAD T G HAD A=
L u()=Xpbe <exp(t’r™) p— U
II. COST(C — U) = r controlled single qubit Pauli rotations Vk

* Gate complexity 7 versus sample complexity exp(tr ') Versus previous LCU methods:
[Berry et al., PRL (2015)]

e Example: 7 = 2t? 2 u < +/e and COST(C — U;,) = 2t*

* Use thison: C(x) = X jes Fjeijx ' Tr[peitfH]



Random compiler for CDF

+ CDF C(x) ~ X Fje* - Tr[pe'i"] becomes C(x) ~ X; Xx Fre b Tr | pU)|

0) —H T GHH A

p—f U,Ej)

.« el = 3, b,((])U,EJ) decomposition for runtime vector 7 = (7;) ;€ NIS! as:

L pj=pi(r) =2 b < exp(¢f7; ")
1. cosT(c-ud)=r



Putting things together

* CDF decomposition C(x) = Zj Dk Fjeiijl(cj)Tr [pU,Ej)]

R _ N C(x)
* Cgate = (ZLES |F'|Mi) B (ZjES|F}'| .ujrj) |
Sample (Z]ES|F |lu]) tr[pll< g, | - \N\/\/\[\W
#
2 —1 B /\f
*Aspu;<e R choosing 17 = 2t Vj gives p; < +/e: Vi

Cgate X (ZiESlﬁiD_l(ZjESlﬁj'jz) 2 Cgate — 6(/12A_2)

Csample X (Zj€slﬁ}'|)2 2 Csample = 6(77_2)

x



Example systems



Finite size numerical analysis

« Asymptotic complexity from fixed runtime vector 7 with = thz VieS
« Optimize 7 to minimize Cgates Csampler OF Cgate * Csample for different settings?

* High-dimensional optimization problem, technical contribution: approximate
dimension reduction that allows for efficient classical pre-processing

e Leads to flexible resource trade-offs:

b

A A

# of samples

# of samples

L

# of gates # of gates



FeMoco benchmark

Li et al. FeMoco Hamiltonian with 152

spin orbitals: 152+1=153 qubits 2000}
Chemical accuracy A = 0.0016 -
Hartree, one-norm A = 1511 i’% 1000§
Gate complexity in single-qubit Pauli T; 500 2= 04
rotations e'0F = | _

= e =0.2
T gate or Toffoli-gate complexity § 200 c—01
similar S v

e=0.00—"

Qubitization using heuristic a0t axiot sxaot ixon
truncations: [Lee et al., PRX Quantum (2021)] Cgate (77)

Cgate = 3.2~ 1019 on 2196 qubits [Koridon et al., PRR (2021)]



Hydrogen chains benchmark

For length N chain, one-norm estimate 1 = O (N13%) oridon etal, prr (2021
Our work Cygee = O(N#°%A72)

Qubitization based approaches:
A. rigorous Cygee = O(N33*A71)
B. sparse method Cygre = O(N%3A™1)  [senyetal, Quantum (2019)

C. tensor hypercontraction method Cyqte = O(N?1A™1) fteeetal, PRX Quantum (2021)]

Extensive properties A oc N interesting for our methods: Cyqr = O (N %)



Conclusion



Recap main result

Given: n-qubit Hamiltonian H = Z{;l oy Py with A = Z{;llall, plus ansatz state p with
ground state overlap (dglpldPo) =1 > 0

Output: ground state energy estimate E, with |Ey — Ey| < A
Result: n + 1 qubits, Cyate = 0(A2A™2), Csampre = 0(™2)
Advantages:

|.  rigorous estimates

Il. onlydependsonA <L

Ill. only uses one ancilla

V. flexible trade-off gate versus sample complexity

V. decrease error by solely taking more samples > still state preparation bottleneck!



Extension: General matrix arithmetic

General matrices A, instead of Hamiltonians H
1

General functions f(x) such as, e.g., x™+, instead of Heaviside 8 (x)

Goal to outperform (probabilistic) classical methods with early fault-tolerance

Quantum singular value transformation (QSVT): ||A||r or S(A) - ||A||max (Givenetal stoc 2o1s)

* Qubit-efficient randomized quantum algorithms for linear algebra, Wang, McArdle,
B., arXiv:2302.01873 (2023)

e A =YF , a;P; Paulis with 1 = Y7, |a;], gives A% complexity (input model!)
* no QRAM needed



Thank you i

Randomized quantum algorithm for statistical phase estimation, Wan, B., Campbell,
Physical Review Letters 129, 030503 (2022)

Efficient randomized quantum algorithms for linear algebra, Wang, McArdle, B.,
arXiv:2302.01873 (2023)



Extra slides



Extra: Proof Fourier series lemma

e Rigorous argument via truncated Chebyshev series of rescaled error function:

1
erf(ﬁy) = 2T 2 foﬁye—tZ dt ~ Zk Cka (y) [Low & Chuang, arxiv:1707.05391 (2017)]

k

T

» Fourier series: 0(x) = erf(Bsin(x)) =~ Y ¢, Tk (cos (E — )

using Ti(cos()) = cos(k()) |
_J

;4 _J




Extra: Proof random compiler lemma

e ForH=Y!  a;P;andr € N: e'flt = (eiH“’_l)r =1 +itr 'H+-)"

L L
1+itr 1H = Z p;(1+itr 1p) « Z pleiepl for & = arccos (\/1 + tzr‘z)
=1 =1

* Similarly handle higher order terms — contain Paulis as well

* To sample U, from elHt — Y. b Uk independently sample r unitaries

iHtr~1

Wi, ..., W,. from decomposition of e and implement product

8 A s 8 A

W1 W2 e er




Extra: gDRIFT comparison

[Campbell, PRL (2019)]

e gDRIFT approximates quantum channel
p e elltpe~tHt for g = YL p, P, (normalized)
by sampling r Paulis P, , ..., P, independently with Pr[P;| = p; and putting
V i— eitr‘lPll eitr‘lPlr

e gDRIFT compilation error can only be suppressed by increasing gate count r

e Our random compiler: approximates unitary U = et and compilation error can be

suppressed arbitrarily by simply taking more samples



