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Abstract—Smooth entropies are a tool for quantifying resource
trade-offs in information theory and cryptography. However, in
typical multi-partite problems some of the sub-systems are often
left unchanged and this is not reflected by the standard smoothing
of information measures over a ball of close states. We propose
to smooth instead only over a ball of close states which also have
some of the reduced states on the relevant sub-systems fixed.
This partial smoothing of information measures naturally allows
to give more refined characterizations of various information-
theoretic problems in the one-shot setting. As a consequence, we
can derive asymptotic second-order characterizations for tasks
such as privacy amplification against classical side information or
classical state splitting. For quantum problems like state merging
the general resource trade-off is tightly characterized by partially
smoothed information measures as well.

I. INTRODUCTION

One-shot information theory concerns itself with finding
tight bounds on the resource trade-offs for various operational
problems in information theory and cryptography (see, e.g.,
[1] for an introduction). Smooth entropies and smooth mutual
informations have in many cases proven to be adequate
information measures in this context. On the one hand, smooth
min-entropy was first introduced in the context of quantum
cryptography [2]. More precisely, the smooth conditional min-
entropy was introduced to characterize the amount of uniform
and independent randomness that can be extracted from a
correlated random variable. On the other hand, the smooth
max-information has been introduced to quantify the commu-
nication requirements in quantum extensions of Slepian-Wolf
coding [3]. Since then smooth entropy measures of various
kinds have been used to characterize a plethora of other tasks
as well. Our main contributions can be summarized as follows:
• We introduce a notion of partially smoothed mutual max-

information and conditional min-entropy and establish
some of their basic mathematical properties.

• We show that these new definitions are equivalent to
their fully smoothed counterparts, up to terms that vanish
in the first-order i.i.d. asymptotics. Moreover, for the
fully classical case this equivalence even holds for the
asymptotic second-order i.i.d. asymptotics.

• We give several examples of operational problems where
the new quantities naturally appear to give tighter bounds

for the one-shot problem. In particular, for classical
problems this leads to asymptotic second-order i.i.d.
expansions.

II. PRELIMINARIES

Before proceeding to our results, we introduce some ba-
sic one-shot information theoretic quantities in the quantum
domain. For brevity of presentation, we define the following
notation for set on operators on a register A. The set of
positive semi-definite (psd) operators acting on A is defined as
P(A). We also define two subsets: the set of quantum states
(i.e. psd operators with unit trace), denoted S◦(A), and sub-
normalized states (i.e. psd operators with trace not exceeding
unity), denoted S•(A).

Let ρ and σ be two psd operators. If ρ� σ we define the
max-divergence [4], [5] as

Dmax(ρ‖σ) := inf
{
λ : ρ ≤ exp(λ)σ

}
,

and otherwise it is defined as +∞. Above, ≥ denotes the
Löwner partial order of operators in P(A). Max-divergence
can be used to define various notions of mutual max-
information and conditional min-entropy, respectively. We will
concern ourselves with the following two definitions [2], [3].
For any bipartite state ρAB ∈ S•(AB), we have

Imax(A;B)ρ := inf
σB∈S•(B)

Dmax(ρAB‖ρA ⊗ σB) ,

Hmin(A|B)ρ := −Dmax(ρAB‖1A ⊗ ρB) .

Our goal is to define a smooth max-information and smooth
min-entropy based on the above quantities, i.e. quantities for
which ρAB is replaced with a ball of states close to ρAB . In
particular, we want the states in this ball to have the property
that the A subsystem is (essentially) left intact. To do this
we need to use a metric ∆(·, ·) on (sub-normalized) quantum
states, i.e. positive semi-definite operators with trace not
exceeding one. In this work, we mainly consider the purified
distance and the trace distance. The purified distance [6] based
on the generalized fidelity is given as

P (ρ, τ) :=
√

1− F 2(ρ, τ) with

F (ρ, τ) := tr
[∣∣√ρ√τ ∣∣]+

√
(1− tr[ρ])(1− tr[τ ])



and the generalized trace distance [1] is given as

T (ρ, τ) :=
1

2
tr
[∣∣ρ− τ ∣∣]+

1

2

∣∣ tr[ρ]− tr[τ ]
∣∣ .

Above definitions take into account that ρ, τ may be sub-
normalized. The standard measures, which are not a metric
for sub-normalized states, are

F̄ (ρ, τ) := tr
[∣∣√ρ√τ ∣∣] and ‖ρ− τ‖1 := tr

[∣∣ρ− τ ∣∣] .
The following two definitions are rather standard:

Definition 1. Let ρAB ∈ S◦(AB) with valid (ε,∆).1 The
(ε,∆)-smooth max-information of A and B is defined as2

Iε,∆max(A;B)ρ := inf Dmax(ρ̃AB‖ρA ⊗ σB)

s.t. ρ̃AB ∈ S◦(AB),

∆(ρ̃AB , ρAB) ≤ ε,
σB ∈ S◦(B) .

Moreover, the (ε,∆)-smooth conditional min-entropy of A
given B is defined as

Hε,∆
min(A|B)ρ := sup −Dmax(ρ̃AB‖1A ⊗ ρB)

s.t. ρ̃AB ∈ S•(AB),

∆(ρ̃AB , ρAB) ≤ ε .

As for the non-smooth case there are other definitions in
use that we will not discuss here specifically, e.g. in the
definition of the smooth max-information one can fix σB to
be ρB to arrive at a different quantity, and similarly the min-
entropy can be further optimized over σB ∈ S•(B). Note that
for the smooth min-entropy it is necessary to smooth over
sub-normalized states as otherwise the quantity will not be
invariant under the application of local embedding maps [1,
Sec. 6.2.3].

III. PARTIALLY SMOOTHED INFORMATION MEASURES

We now propose the following new definition for the smooth
max-information:

Definition 2. Let ρAB ∈ S◦(AB) with valid (ε,∆). The
(ε,∆)-smooth max-information with fixed A of ρAB is defined
as

Iε,∆max(Ȧ;B)ρ := inf Dmax(ρ̃AB‖ρA ⊗ σB)

s.t. ρ̃AB ∈ S◦(AB),

∆(ρ̃AB , ρAB) ≤ ε,
ρ̃A = ρA,

σB ∈ S◦(B) .

We also suggest the following new definition of smooth
conditional min-entropy:

1We call a tuple (ε,∆) with ε ≥ 0 valid for a state ρ if ∆(ρ, 0) > ε (with
0 denoting the additive identity).

2The original definition of the smooth max-information in [3, Eq. 12] was
slightly different and based on Dmax(ρ̃AB‖ρ̃A ⊗ σB).

Definition 3. Let ρAB ∈ S◦(AB) with valid (ε,∆). Then, the
(ε,∆)-smooth min-entropy with fixed B of ρAB is defined as

Hε,∆
min(A|Ḃ)ρ := sup −Dmax(ρ̃AB‖1A ⊗ ρB)

s.t. ρ̃AB ∈ S•(AB),

∆(ρ̃AB , ρAB) ≤ ε,
ρ̃B ≤ ρB , .

If the input states are classical in a fixed basis all the
definitions apply for this case as well. It is then immediate
to see that the respective optimizations over ρ̃AB and σB can
without loss of generality be restricted to be diagonal in this
fixed basis as well.3 An important property of our definitions
is that they are monotonic under quantum operations.

Lemma 1. Let ρAB ∈ S◦(AB) with valid (ε,∆). For any two
completely positive trace preserving maps E : P(A)→ P(A′)
and F : P(B)→ P(B′), we have

Iεmax(Ȧ;B)ρ ≥ Iεmax(Ȧ′;B′)τ

where τA′B′ = (E ⊗F)(ρAB). Furthermore, if E is also sub-
unital (i.e. it satisfies E(1A) ≤ 1A′ ), then

Hε
min(A; Ḃ)ρ ≤ Hε

min(A′; Ḃ′)τ .

Proof. See full version [7, Lem. 3].

Clearly every operational definition should be invariant
under isometries as embeddings are essentially just a choice
of modelling and should not effect operational quantities. This
is exhibited by the following lemma.

Lemma 2. Let ρAB ∈ S◦(AB) with valid (ε,∆). For any two
isometries U : A→ A′, V : B → B′, it holds that

Iε,∆max(Ȧ;B)ρ = Iε,∆max(Ȧ′;B′)ρ and

Hε,∆
min(A; Ḃ)ρ = Hε,∆

min(A′; Ḃ′)ρ

where ρA′B′ = (U ⊗ V )ρAB(U ⊗ V )†.

Proof. See full version [7, Lem. 4].

One could hope to replace ρ̃A ≤ ρA in Definition 2 by an
equality, thus forcing the state ρ̃AB to have the same trace
as ρAB . However, for such a definition one would then need
to show a property analogous to the above invariance under
isometries, which seems non-trivial. The following argument
gives also an indication that sub-normalized states are desir-
able in this context, although it does not conclusively show
that they are necessary for our definition.

For the (unconditional) min-entropy, invariance under
isometries can only hold if we allow sub-normalized states.
To see this, consider the min-entropy of the state ρ = 1/d,

3To see this, for example for the smooth max-information, note that if this
were not so then the full dephasing map (in the classical basis) could be
applied to both sides of the operator inequality

ρ̃AB ≤ ρA ⊗ σB , (1)

yielding a new feasible solution since the distance between ρAB and ρ̃AB is
also reduced when the dephasing map is applied due to Lem. 1 (with ε = 0).



which is maximal for normalized states of dimension d and
thus cannot be increased by smoothing over this set. However,
if embedded into a larger space smoothing will yield a larger
min-entropy. Allowing sub-normalized states introduces an
alternative to moving weight out of the support of ρ and it
turns out that this is exactly what is needed to ensure the
quantity is invariant under isometries.

IV. RELATION TO OTHER ENTROPY MEASURES

A. Classical Setting

Since the (generalized) trace distance is directly connected
to error probabilities it is often natural to stick to this distance
measure for classical problems. We will do so in this section.
We will also continue using the notations P,S◦,S•, although
now we restrict to diagonal matrices in some basis, interpreted
as (potentially sub-normalized) probability distributions. In
order to establish an asymptotic equipartition property for our
locally smoothed information measures we relate them to other
well-studied entropic quantities such as information spectrum
divergences [8]. Note that standard asymptotic equipartition
proofs for mutual information and conditional entropy do not
leave any of the marginals unchanged.

Definition 4. For PX , QX ∈ P(X) and ε ∈ [0, 1], the max-
information spectrum divergence is defined as

Dε
s(PX‖QX) := inf

{
a : Pr

x←pX

{
PX(x)

QX(x)
> 2a

}
< ε

}
.

Importantly, the max-information spectrum divergence has
the following i.i.d. asymptotic second-order expansion [9]

1

n
Dε
s(P

×n
X ‖Q

×n
X ) =D(PX‖QX) +

√
V (PX‖QX)

n
· Φ−1(ε)

+O

(
log n

n

)
with the Kullback-Leibler divergence and the relative entropy
variance

D(PX‖QX) :=
∑
x

PX(x) log

(
PX(x)

QX(x)

)
V (PX‖QX) := E

[
(logPX − logQX −D(PX‖QX))2

]
respectively, as well as the cumulative standard Gaussian
distribution Φ(x) :=

∫ x
−∞

1
2π exp(x2/2) dx. We then define

the information spectrum max-information and conditional
min-entropy as

Iεs (X;Y )P := Dε
s(PXY ‖PX × PY ) and

Hε
s (X|Y )P := −Dε

s(PXY ‖1X × PY )

respectively. This leads to the following equivalence result:

Theorem 1. Let PXY ∈ S◦(XY ) and 0 < ε + δ ≤ 1. Then,
we have

I
ε

1−δ+δ
s (X;Y )P − log

1

δ2
≤ Iε,Tmax(Ẋ;Y )P ≤ Iεs (X;Y )P + 1

H
ε

1−δ
s (X|Y )P + log

1

δ
≥ Hε,T

min(X|Ẏ )P ≥ Hε
s (X|Y )P − 1 .

Proof. See full version [7, Thm. 1].

This implies the asymptotic second-order expansions

1

n
Iε,Tmax(Ẋ;Y )P = I(X;Y )P +

√
V (X;Y )P

n
· Φ−1(ε)

+O

(
log n

n

)
1

n
Hε,T

min(X|Ẏ )P = H(X|Y )P +

√
V (X|Y )P

n
· Φ−1(ε)

+O

(
log n

n

)
with the mutual information variance V (X;Y )P :=
V (PXY ‖PX × PY ) and the conditional information variance
V (X|Y )P := V (PXY ‖1x × PY ).

B. Quantum setting

For quantum problems Uhlmann’s theorem indicates that it
is natural to work with fidelity based distance measures such
as the purified distance — which is what we will use in this
section. Now, the equivalence proof of Theorem 1 as presented
in [7, Thm. 1] crucially uses the idea of conditioning on the
classical side information and hence we cannot give a direct
quantum analogue. Instead, we find the following inequalities:

Theorem 2. Let ρAB ∈ S◦(AB) and 0 ≤ 2ε + δ ≤ 1 with
δ > 0. Then, we have

I2ε+δ,P
max (Ȧ;B)ρ ≤ Iε,Pmax(A;B)ρ + log

8 + δ2

δ2
,

and by definition we also have the opposite inequality
Iε,Pmax(Ȧ;B)ρ ≥ Iε,Pmax(A;B)ρ. Moreover, we have

H2ε+δ,P
min (A|Ḃ)ρ ≥ Hε,P

min(A|B)ρ − log
8 + δ2

δ2
,

and by definition we also have the opposite inequality
Hε,P

min(A|Ḃ)ρ ≤ Hε,P
min(A|B)ρ.

Proof. See full version [7, Thm. 2-3].

V. OPERATIONAL EXAMPLES

We find that many existing proofs and protocols readily ap-
ply and give tighter bounds when combined with our restricted
smoothing. In the following we discuss various basic classical
and quantum examples in bipartite settings.

A. Classical state splitting

Let ε ∈ (0, 1] be the error parameter. There are two
parties Alice and Bob. Alice possesses random variable X ,
taking values over a finite set X and a random variable Y ,
taking values over a finite set Y . Alice sends a message to
Bob and at the end Bob outputs random variable Ŷ such
that T (PXY , PXŶ ) ≤ ε. They are allowed to use shared
randomness between them which is independent of XY at
the beginning of the protocol.

We note that a generalization of this task with additional
side information was studied in [10, Thm. 1]. These results
together with [11] imply that the minimal number R(PXY , ε)



of bits communicated from Alice to Bob to achieve classical
state splitting with error ε ∈ (0, 1] in generalized trace distance
is bounded as

Iε/(1−δ)s (PXY ‖PX × PY )− log
1

δ

≤ R(PXY , ε) ≤ Iε−3δ
s (PXY ‖PX × PY ) + log

1

δ2

for δ ∈ (0, 1) small enough. We show an even tighter
characterization in terms of the smooth max-information.

Theorem 3. Let PXY ∈ S◦(XY ). Then, for any δ ∈ (0, ε], the
minimal number R(PXY , ε) of bits communicated from Alice
to Bob to achieve classical state splitting with error ε ∈ (0, 1]
in generalized trace distance is bounded as

Iε,Tmax(Ẋ;Y )P ≤ R(PXY , ε) ≤ Iε−δ,Tmax (Ẋ;Y )P + log log
1

δ2
.

Proof. See full version [7, Thm. 4].

B. Strong privacy amplification against side information
For a set of two-universal hash functions {fsX→Z}s∈S and

classical-quantum states

ρXB =
∑
X∈X

|x〉〈x| ⊗ ρxB ∈ S◦(XB)

we use the same composable security criterion for ε-random
and secret bits as, e.g, in [1, Sect. 7.3],

∆

(∑
s∈S
z∈Z

|sz〉〈sz|SZ
|S|

⊗

( ∑
x:fs(x)=z

ρxB

)
︸ ︷︷ ︸

=: ωSZB

,
1SZ
|S||Z|

⊗ ρB

)
≤ ε .

(2)

Note that in contrast to the setting studied in [12, Sect. III]
or [13] we have a composable security definition by putting
the reduced state on B on the lhs of Eq. (2). We refer to [14,
App. B] for a more detailed discussion. The maximal number
of ε-random and secret bits that can be extracted from ρXB
such that (2) is denoted `∆(ρXB , ε), where ∆ is either P or
T , as usual.

Theorem 4. Let ρXB ∈ S◦(XB) be classical-quantum on
XB and ε ∈ (0, 1]. Then, the maximal number of ε-random
and secret bits that can be extracted from ρXB is bounded as

Hε−δ,P
min (X|Ḃ)ρ − log

1

δ4
≤ `P (ρXB , ε) ≤ Hε,P

min(X|Ḃ)ρ

(3)

for any δ ∈ (0, ε]. Moreover, when B = Y is classical then
we also have

Hε−δ,T
min (X|Ẏ )P − log

1

4δ2
≤ `T (PXY , ε) ≤ Hε,T

min(X|Ẏ )P .

(4)

This implies the asymptotic second-order expansion

1

n
`T
(
P×nXY , ε

)
=H(X|Y )P +

√
V (X|Y )P

n
· Φ−1(ε)

+O

(
log n

n

)

as first given in [15, Thm. 25] (see also [16, Thm. 3]).

Proof. We first prove the lower bound in Eq. (3). Let ρ̃XB ∈
S•(XB) be the optimizer in the definition of Hε−δ,P

min (X|Ḃ)ρ
and let

ω̃SZB :=
1

|S|
∑
s∈S
z∈Z

|s〉〈s|S ⊗ |z〉〈z| ⊗

( ∑
x:fs(x)=z

ρ̃xB

)
. (5)

Since by definition ρB ≥ ρ̃B and by data-processing
P (ωSZB , ω̃SZB) ≤ ε− δ we get that

P

(
ωSZB ,

1S
|S|
⊗ 1Z
|Z|
⊗ ρB

)
≤ P

(
ωSZB ,

1S
|S|
⊗ 1Z
|Z|
⊗ ρ̃B

)
≤ P

(
ω̃SZB ,

1S
|S|
⊗ 1Z
|Z|
⊗ ρ̃B

)
+ P (ωSZB , ω̃SZB)

≤ P
(
ω̃SZB ,

1S
|S|
⊗ 1Z
|Z|
⊗ ρ̃B

)
+ ε− δ

≤

√
2T

(
ω̃SZB ,

1S
|S|
⊗ 1Z
|Z|
⊗ ρ̃B

)
+ ε− δ

where in the last step we employed the equivalence of gener-
alized trace distance and purified distance [1, Lem. 3.5]. Now,
standard achievability proofs such as [13, Thm. 6] applied to
ρ̃XB ∈ S•(XB) give

T

(
ω̃SZB ,

1S
|S|
⊗ 1Z
|Z|
⊗ ρ̃B

)
≤ 1

2

√
|Z| · 2−Hε−δ,Pmin (X|Ḃ)ρ

and choosing log |Z| = Hε−δ,P
min (X|Ḃ)ρ − log 1

δ4 leads to the
claim. For the upper bound in Eq. (3) we follow [1, Sect. 7.3.3]
but adapted to our partially smoothed conditional min-entropy.
Namely, assume by contradiction that there exists a protocol
which extracts ` > Hε,P

min(X|Ḃ)ρ bits of ε-random and secret
bits. Then, since applying a function on X cannot increase the
smooth conditional min-entropy [7, Lem. 6] we have for all
s ∈ S that

` > Hε,P
min(X|Ḃ)ρ ≥ Hε,P

min(Z|Ḃ)ρs with

ρsZB :=
∑
z∈Z
|z〉〈z|Z ⊗

 ∑
x:fs(x)=z

ρxB

 .

Hence, for all ρ̃ZB ∈ S•(ZB) with P (ρ̃ZB , ρ
s
ZB) ≤ ε we

have Hmin(Z|B)ρ̃ < `. This in turn implies P (ρsZB ,
1Z
|Z| ⊗

ρB) > ε =⇒ P (ωSZB ,
1S
|S| ⊗

1Z
|Z| ⊗ ρB) > ε, which is in

contradiction to Eq. (2).
The upper bound in Eq. (4) follows in the same way as the

upper bound in Eq. (3), just by noting that in the classical case
the monotonicity under functions also holds for the generalized
trace distance [7, Lem. 6]. For the lower bound in Eq. (4),
denote in the security criterion Eq. (2) the state ωSZB for B =
Y classical by QSZY , let P̃XY ∈ S•(XY ) be the optimizer
in the definition of Hε−δ,T

min (X|Ẏ )P , and let Q̃SZY be defined



as in Eq. (5). Since by definition PY ≥ P̃Y and by data-
processing T

(
QSZY , Q̃SZY

)
≤ ε− δ we get that

T

(
QSZY ,

1S
|S|
× 1Z
|Z|
× PY

)
≤ T

(
Q̃SZY ,

1S
|S|
× 1Z
|Z|
× P̃Y

)
+ T

(
QSZY , Q̃SZY

)
≤ T

(
Q̃SZY ,

1S
|S|
× 1Z
|Z|
× P̃Y

)
+ ε− δ .

Now, standard achievability proofs such as [13, Thm. 6]
applied to P̃XY ∈ S•(XY ) lead to the claim for log |Z| =
Hε−δ,T

min (X|Ẏ )P − log 1
4δ2 .

C. Quantum state merging

A pure tripartite state ρABR is shared between parties
Alice (A), Bob (B), and the reference R. The goal is to
send the A-marginal from Alice to Bob using classical com-
munication and entanglement assistance while not changing
the overall state [17], [18], [19], [20]. More precisely, for
ρABR ∈ S◦(ABR) of rank-one and A0B0 additional quantum
systems, a quantum channel

E : AA0 ⊗BB0 → A1 ⊗B1B̄B

is a quantum state merging of ρABR with error ε ∈ [0, 1], if
it is a local operation with classical forward communication
process for the bipartition AA0 → A1 versus BB0 → B1B̄B,
and P

(
(E ⊗IR)(ΦA0B0

⊗ρABR),ΦA1B1
⊗ρBB̄R

)
≤ ε where

ρBB̄R = (IA→B̄ ⊗ IBR)(ρABR), and ΦA0B0
, ΦA1B1

are
maximally entangled states on A0B0, A1B1, respectively. The
difference log |A0|− log |A1| quantifies the entanglement cost.
We find the following theorem.

Theorem 5. Let ρABR ∈ S◦(ABR) be of rank-one. For free
classical communication assistance the minimal entanglement
cost E(ρABR, ε) for quantum state merging of ρABR with
error ε ∈ (0, 1] in purified distance is bounded as

−Hε,P
min(A|Ṙ)ρ ≤ E(ρABR, ε) ≤ −Hε−δ,P

min (A|Ṙ)ρ + log
1

δ4

for any δ ∈ (0, ε]. Alternatively, for unlimited entanglement as-
sistance — not necessarily constraint to the form of maximally
entangled states — the minimal classical communication cost
C(ρABR, ε) for quantum state merging of ρABR with error
ε ∈ (0, 1] in purified distance is bounded as

Iε,Pmax(Ṙ;A)ρ ≤ C(ρABR, ε) ≤ Iε−δ,Pmax (Ṙ;A)ρ + log
1

δ4

for any δ ∈ (0, ε].

Proof. See full version [7, Thm. 6]

The asymptotic first-order expansions then follow from
the asymptotic first order expansion for max-information and
conditional min-entropy. Thus, we recover the original results
on quantum state merging [17], [18]. As shown in these refer-
ences in first-order asymptotically the entanglement cost and
classical communication cost can actually be simultaneously

minimised — whereas this becomes unclear in the one-shot
setting. The asymptotic second-order expansions are an open
problem but are now again reduced to giving the asymptotic
second-order expansions of Hε,P

min(A|Ṙ)ρ and Iε,Pmax(Ṙ;A)ρ,
respectively.

VI. OUTLOOK

As we have seen our locally smoothed information measures
naturally appear in a plethora of operational tasks in quantum
information theory. The main open problem raised by our
work is to give asymptotic i.i.d. second-order expansions of
the partially smoothed information measures Hε,∆

min(A|Ḃ)ρ and
Iε,∆max(Ȧ;B)ρ for the quantum case.
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