De Finetti Theorems for Quantum Channels

Mario Berta

arXiv:1810.12197 with Borderi, Fawzi, Scholz

QIMP Budapest 04/09/2019

Imperial College London

Outline

Motivation: Noisy Channel Coding

De Finetti Theorems

Application: Noisy Channel Coding

Conclusion

Proofs Ideas (board)

Motivation: Noisy Channel Coding

Noisy Channel Coding

Error Correction

m bits are subject to noise modelled by N(y|x), find encoder e and decoder d to maximize probability p(N, m) of retrieving m bits

Noisy Channel Coding (continued)

Fixed number of bits m and noise model N gives bilinear optimization

$$p(N,m) = \max_{(e,d)} \frac{1}{2^m} \sum_{x,y,i} N(y|x) d(i|y) e(x|i)$$
s.t.
$$\sum_{x} e(x|i) = 1, \ 0 \le e(x|i) \le 1$$

$$\sum_{i} d(i|y) = 1, \ 0 \le d(i|y) \le 1$$

Approximating p(N, m) up to multiplicative factor better than $(1 - e^{-1})$ is **NP-hard** in the worst case [Barman & Fawzi 18]

Noisy Channel Coding (continued)

For the linear program [Hayashi 09, Polyanski et al. 10]

$$lp(N,m) = \max_{(r,p)} \frac{1}{2^m} \sum_{x,y} N(y|x) r_{xy}$$
s.t.
$$\sum_{x} r_{xy} \le 1, \sum_{x} p_x = 2^m$$

$$r_{xy} \le p_x, \ 0 \le r_{xy}, p_x \le 1$$

we have the approximation [Barman & Fawzi 18]

$$p(N,m) \le \operatorname{lp}(N,m) \le \frac{1}{1 - e^{-1}} \cdot p(N,m)$$

▶ Outer bound complemented by **polynomial time** $(1 - e^{-1})$ -multiplicative approximation algorithms

Quantum Noisy Channel Coding

▶ Main question: Similar results for quantum error correction? [Matthews 12, Leung & Matthews 15]

Quantum Error Correction

Find encoder E and decoder D to maximize quantum probability $F(\mathcal{N}, m)$ of retrieving m qubits

Near-term quantum devices are of small and intermediate scale

▶ Tailor-made **approximation algorithms** for encoder/ decoder?

Optimize Quantum Information Processing

Develop mathematical toolbox rooted in optimization theory

▶ m qubits with quantum noise model N leads to quantum channel fidelity

$$F(\mathcal{N},m) \coloneqq \max \quad F\left(\Phi^m, \left(\left(\mathcal{D} \circ \mathcal{N} \circ \mathcal{E}\right) \otimes \mathcal{I}\right)(\Phi^m)\right)$$
 s.t. \mathcal{E}, \mathcal{D} quantum operations (+ physical constraints)

with fidelity
$$F(\rho, \sigma) := \|\sqrt{\rho}\sqrt{\sigma}\|_1^2$$
.

Via Choi-Jamiołkowski becomes bilinear optimization

$$\begin{split} F(\mathcal{N},m) &= \max \quad d_{\bar{A}}d_B \cdot \mathrm{Tr}\left[\left(\mathcal{J}_{\bar{A}B}^{\mathcal{N}} \otimes \Phi_{A\bar{B}}\right) \left(E_{A\bar{A}} \otimes D_{\bar{B}\bar{B}}\right)\right] \\ &\text{s.t.} \quad E_{A\bar{A}} \geq 0, \ E_A = \frac{1_A}{d_A}, \ D_{B\bar{B}} \geq 0, \ D_B = \frac{1_B}{d_B} \end{split}$$

with product Choi states $E_{A\bar{A}} \otimes D_{B\bar{B}}$ (where $d_A = d_{\bar{B}} = 2^m$).

- At least as hard as classical problem, approximate solutions?
- Inner bounds on figure of merit via from any feasible solution via, e.g.,
 - physical intuition [Bennett et al. 96]
 - iterative see-saw methods [Reimpell & Werner 05]
- Main question: Outer bounds?

 Quantum channel fidelity stays the same with free shared randomness assistance

$$F(\mathcal{N}, n) = \max \quad d_{\bar{A}}d_{B} \cdot \operatorname{Tr}\left[\left(\mathcal{J}_{\bar{A}B}^{\mathcal{N}} \otimes \Phi_{A\bar{B}}\right)\left(\sum_{i \in I} p_{i}E_{A\bar{A}}^{i} \otimes \mathcal{D}_{B\bar{B}}^{i}\right)\right]$$
s.t.
$$p_{i} \geq 0, \ \sum_{i \in I} p_{i} = 1$$

$$E_{A\bar{A}}^{i} \geq 0, \ D_{B\bar{B}}^{i} \geq 0, \ E_{A}^{i} = \frac{1_{A}}{d_{A}}, \ D_{B}^{i} = \frac{1_{B}}{d_{B}} \ \forall i \in I$$

and leads to separable Choi states $\sum_{i \in I} p_i E^i_{A\bar{A}} \otimes D^i_{B\bar{B}}$.

- ▶ Idea: Find outer approximations on the set of **separable Choi** states $SEP_{\mathcal{N}}(A\overline{A}|B\overline{B})$
- ▶ NB: Strong hardness for quantum separability problem known [Barak *et al.* 12]

De Finetti Theorems

Monogamous Entanglement

Quantum states ρ_{AB} are called k-shareable if

$$\rho_{AB_{1}^{k}} \equiv \rho_{AB_{1}...B_{k}}$$
 with $\rho_{AB_{j}} = \rho_{AB} \ \forall j \in [k]$

⇒ characterizes separable states [Stoermer 69, Doherty et al. 02]

De Finetti for Quantum States

For k-shareable quantum states ρ_{AB} we have that [Christandl et al. 07]

$$\left\| \rho_{AB} - \sum_{i \in I} p_i \sigma_A^i \otimes \omega_B^i \right\|_1 \le \frac{d_B^2}{k}$$

with probabilities $\{p_i\}_{i\in I}$ and quantum states $\sigma_A^i, \omega_B^i \ \forall i \in I$.

▶ Use $\rho_{AB_1^k} = (\mathcal{I}_A \otimes \pi_{B_1^k})(\rho_{AB_1^k})$ for $\pi_{B_1^k} \in \mathfrak{S}_k$ — the symmetric group of k elements

k-shareable Choi States

De Finetti for Choi States

For states $\rho_{A\overline{A}(B\overline{B})_{i}^{k}} = (\mathcal{I}_{A\overline{A}} \otimes \pi_{(B\overline{B})_{i}^{k}})(\rho_{A\overline{A}(B\overline{B})_{i}^{k}}) \ \forall \pi_{(B\overline{B})_{i}^{k}} \in \mathfrak{S}_{k}$ with

$$\rho_{A(B\bar{B})_1^k} = \frac{1_A}{d_A} \otimes \rho_{(B\bar{B})_1^k} \quad \text{and} \quad \rho_{(B\bar{B})_1^{k-1}B_k} = \rho_{(B\bar{B})_1^{k-1}} \otimes \frac{1_{B_k}}{d_B}$$

we have that

$$\left\| \rho_{A\bar{A}B\bar{B}} - \sum_{i \in I} \rho_i \sigma_{A\bar{A}}^i \otimes \omega_{B\bar{B}}^i \right\|_1 \leq \sqrt{\frac{\mathsf{poly}(d)}{k}} \quad \text{for } \sigma_A^i = \frac{1_A}{d_A}, \, \omega_B^i = \frac{1_B}{d_B} \, \, \forall i \in I.$$

- ▶ Non-signalling: $A \to (B\bar{B})_1^k$ and $B_k \to (B\bar{B})_1^{k-1}$ [Duan & Winter 16]
- Set of k-shareable Choi states $SH_{\mathcal{N}}^k(A\bar{A}|B\bar{B})$ characterizes set of separable Choi states $SEP_{\mathcal{N}}(A\bar{A}|B\bar{B})$

k-shareable Quantum Channels

De Finetti for Ouantum Channels

For quantum channels with

$$\begin{split} \mathcal{N}_{AB_{1}^{k}\to\bar{A}\bar{B}_{1}^{k}}\left(\left(\mathcal{I}_{A}\otimes\pi_{B_{1}^{k}}\right)(\cdot)\right) &= \left(\mathcal{I}_{A}\otimes\pi_{\bar{B}_{1}^{k}}\right)\left(\mathcal{N}_{AB_{1}^{k}\to\bar{A}\bar{B}_{1}^{k}}(\cdot)\right) \;\;\forall\pi_{B_{1}^{k}},\pi_{\bar{B}_{1}^{k}}\in\mathfrak{S}_{k} \\ \operatorname{Tr}_{\bar{A}}\left[\mathcal{N}_{AB_{1}^{k}\to\bar{A}\bar{B}_{1}^{k}}(\cdot)\right] &= \operatorname{Tr}_{\bar{A}}\left[\mathcal{N}_{AB_{1}^{k}\to\bar{A}\bar{B}_{1}^{k}}\left(\frac{1_{A}}{d_{A}}\otimes\operatorname{Tr}_{A}[\cdot]\right)\right] \\ \operatorname{Tr}_{\bar{B}_{k}}\left[\mathcal{N}_{AB_{1}^{k}\to\bar{A}\bar{B}_{1}^{k}}(\cdot)\right] &= \operatorname{Tr}_{\bar{B}_{k}}\left[\mathcal{N}_{AB_{1}^{k}\to\bar{A}\bar{B}_{1}^{k}}\left(\operatorname{Tr}_{B_{k}}[\cdot]\otimes\frac{1_{B_{k}}}{d_{B}}\right)\right] \end{split}$$

we have that

$$\left\| \mathcal{N}_{AB \to \bar{A}\bar{B}} - \sum_{i \in I} p_i \mathcal{E}_{A \to \bar{A}}^i \otimes \mathcal{D}_{B \to \bar{B}}^i \right\|_{\infty} \leq \sqrt{\frac{\text{poly}(d)}{k}}$$

with probabilities $\{p_i\}_{i\in I}$ and $\mathcal{E}_{A\to \overline{A}}^i$, $\mathcal{D}_{R\to \overline{R}}^i$ quantum channels $\forall i \in I$.

Application: Noisy Channel Coding

Quantum Channel Fidelity

Shared randomness assisted version

$$\begin{split} F(\mathcal{N},m) &= \max \quad d_{\bar{A}}d_B \cdot \mathrm{Tr}\left[\left(J_{\bar{A}\bar{B}}^{\mathcal{N}} \otimes \Phi_{A\bar{B}}\right)\left(\sum_{i \in I} p_i E_{A\bar{A}}^i \otimes D_{B\bar{B}}^i\right)\right] \\ &\text{s.t.} \quad p_i \geq 0, \ \sum_{i \in I} p_i = 1 \\ E_{A\bar{A}}^i \geq 0, \ D_{B\bar{B}}^i \geq 0, \ E_A^i = \frac{1_A}{d_A}, \ D_B^i = \frac{1_B}{d_B} \ \forall i \in I \end{split}$$

- ▶ Idea: Approximate separable Choi states $\sum_{i \in I} p_i E^i_{A\bar{A}} \otimes D^i_{B\bar{B}}$ by k-shareable Choi states $W_{A\bar{A}(B\bar{B})^k_i}$
- ▶ *k*-shareable has **semi-definite representation**

Outer Bound Approximations

▶ Efficiently computable semi-definite program outer bounds

$$\begin{split} \operatorname{sdp}_{k}(\mathcal{N}, m) &:= \max \quad d_{\bar{A}}d_{B} \cdot \operatorname{Tr}\left[\left(\mathcal{N}_{\bar{A} \to B_{1}} \left(\Phi_{\bar{A}\bar{A}}\right) \otimes \Phi_{A\bar{B}_{1}}\right) W_{A\bar{A}B_{1}\bar{B}_{1}}\right] \\ & \text{s.t.} \quad W_{A\bar{A}(B\bar{B})_{1}^{k}} \geq 0, \ \operatorname{Tr}\left[W_{A\bar{A}(B\bar{B})_{1}^{k}}\right] = 1, \ W_{A\bar{A}(B\bar{B})_{1}^{k}} = \left(\mathcal{I}_{A\bar{A}} \otimes \pi_{(B\bar{B})_{1}^{k}}\right) \left(W_{A\bar{A}(B\bar{B})_{1}^{k}}\right) \\ W_{A(B\bar{B})_{1}^{k}} &= \frac{1_{A}}{2^{m}} \otimes W_{(B\bar{B})_{1}^{k}}, \ W_{A\bar{A}(B\bar{B})_{1}^{k-1}B_{k}} = W_{A\bar{A}(B\bar{B})_{1}^{k-1}} \otimes \frac{1_{B_{k}}}{d_{B}} \\ & \operatorname{PPT}\left(A\bar{A} : (B\bar{B})_{1}^{k}\right) \geq 0 \quad \text{(positive partial transpose)} \end{split}$$

With approximation guarantee to quantum channel fidelity

$$|\operatorname{spd}_k(\mathcal{N}, m) - F(\mathcal{N}, m)| \le \sqrt{\frac{\operatorname{poly}(d)}{k}}$$

Previous: [Matthews 12, Leung & Matthews 15, Tomamichel et al. 16, Wang et al. 16/17] and [Rozpedek et al. 18, Kaur et al. 18]

Certifying Optimality of Relaxations

Compare classical linear program relaxation [Barman & Fawzi 18]

$$p(N,m) \le \operatorname{lp}(N,m) \le \frac{1}{1 - e^{-1}} \cdot p(N,m)$$

▶ No finite approximation guarantee for $F(\mathcal{N}, m) \leq \operatorname{sdp}_k(\mathcal{N}, m)$

Rank Loop Conditions

If for $k \in \mathbb{N}$ there exists $l \in \mathbb{N}$ such that

$$\operatorname{rank}\left(W_{A\overline{A}\left(B\overline{B}\right)_{1}^{k}}\right) \leq \operatorname{max}\left\{\operatorname{rank}\left(W_{A\overline{A}\left(B\overline{B}\right)_{1}^{l}}\right), \operatorname{rank}\left(W_{\left(B\overline{B}\right)_{1}^{k-l}}\right)\right\}$$

then we have equality $\operatorname{sdp}_k(\mathcal{N}, m) = F(\mathcal{N}, m)$

Proof via [Navascués et al. 09]

Numerical Example Relaxations

Uniform noise corresponds to qubit depolarizing channel

$$\operatorname{Dep}_{p}: \rho \mapsto p \cdot \frac{1_{B}}{2} + (1-p) \cdot \rho \quad \text{with } p \in [0,4/3].$$

Question

What is the optimal code for reliably storing m=1 qubit in noisy 5 qubit quantum memory, that is, $p\left(\operatorname{Dep}_{p}^{\otimes 5},1\right)=?$

▶ Analytical [Bennett *et al.* 96] as well as see-saw [Reimpell & Werner 05] lower bounds, our work upper bounds

$$\rho\left(\operatorname{Dep}_{\rho}^{\otimes 5},1\right)\leq\operatorname{sdp}_{k}\left(\operatorname{Dep}_{\rho}^{\otimes 5},1\right)$$

Numerical Example Relaxations (continued)

Exploiting symmetries for analytical **dimension reduction** for first level $\operatorname{sdp}_1\left(\operatorname{Dep}_p^{\otimes 5},1\right)$ [Wang *et al.* 16/17] gives

[Reimpell & Werner 05] lower bounds

▶ $p \in [1, 4/3]$ [Reimpell & Werner 05] optimal, $p \in [0, 0.18]$ room for improved codes

Conclusion

Conclusion

- Quantum noisy channel coding (one-shot) via de Finetti theorem for quantum channels
- Optimization theory tools to numerically study quantum error correction for practical settings
- Variations possible, e.g., classical communication assistance, physical constraints

Open Questions

- Numerics via dimension reduction? Polynomial size + symdpoly numerics [Rosset]?
- Settings with provably good quantum meta-converse?
- Optimal quantum de Finetti: dimension dependence, minimal conditions?

Proofs Ideas (board)

Proof Ideas: De Finetti for Choi States

Let $\rho_{A\overline{A}(B\overline{B})_1^k}$ be quantum states such that for $\pi \in \mathfrak{S}_k$

$$\begin{split} \rho_{A\bar{A}(B\bar{B})_1^k} &= (\mathcal{I}_{A\bar{A}} \otimes \pi_{(B\bar{B})_1^k}) (\rho_{A\bar{A}(B\bar{B})_1^k}) \\ \rho_{A(B\bar{B})_1^k} &= \frac{1_A}{d_A} \otimes \rho_{(B\bar{B})_1^k} \\ \rho_{(B\bar{B})_1^{k-1}B_k} &= \rho_{(B\bar{B})_1^{k-1}} \otimes \frac{1_{B_k}}{d_B}. \end{split}$$

Then, we have that

$$\left\| \rho_{A\overline{A}B\overline{B}} - \sum_{i \in I} \rho_i \sigma^i_{A\overline{A}} \otimes \omega^i_{B\overline{B}} \right\|_1 \leq \sqrt{\frac{\mathsf{poly}(d)}{k}}$$

with probabilities $\{p_i\}_{i\in I}$ and $\sigma_A^i = \frac{1_A}{d_A}$, $\omega_B^i = \frac{1_B}{d_B} \ \forall i \in I$.

Proof Ideas: De Finetti with Linear Constraints

Let $\rho_{AB_1^k}$ be quantum states, $\Lambda_{A \to C_A}$, $\Gamma_{B \to C_B}$ linear maps, and X_{C_A} , Y_{C_B} operators such that for $\pi \in \mathfrak{S}_k$

$$\begin{split} \left(\mathcal{I}_{A}\otimes\pi_{B_{1}^{k}}\right)\left(\rho_{AB_{1}^{k}}\right) &= \rho_{AB_{1}^{k}} & k\text{-shareable on }B \\ \left(\Lambda_{A\to C_{A}}\otimes\mathcal{I}_{B_{1}^{k}}\right)\left(\rho_{AB_{1}^{k}}\right) &= X_{C_{A}}\otimes\rho_{B_{1}^{k}} & \text{linear constraint on }A \\ \Gamma_{B_{k}\to C_{B}}\left(\rho_{B_{1}^{n}}\right) &= \rho_{B_{1}^{k-1}}\otimes Y_{C_{B}} & \text{linear constraint on }B. \end{split}$$

Then, we have that

$$\left\| \rho_{AB} - \sum_{i \in I} \rho_i \sigma_A^i \otimes \omega_B^i \right\|_1 \le \sqrt{\frac{d_B^4 (d_B + 1)^2 \log d_A}{k}}$$

with probabilities $\{p_i\}_{i\in I}$ and quantum states σ_A^i, ω_B^i such that $\forall i \in I$

$$\Lambda_{A \to C_A} \left(\sigma_A^i \right) = X_{C_A} \quad \text{and} \quad \Gamma_{B \to C_B} \left(\omega_B^i \right) = Y_{C_B}.$$

Application: Bilinear Optimization

De Finetti with linear constraints gives **outer hierarchy for programs of the bilinear form**

$$\max \quad \operatorname{Tr}[H(D \otimes E)]$$
s.t. $D \in \mathcal{S}_D, E \in \mathcal{S}_E$

where H is a matrix and S_D and S_E are positive semi-definite representable sets of the form

$$S_D = \prod_{A \to D} (S_A^+ \cap A_A)$$
 and $S_E = \prod_{B \to E} (S_B^+ \cap A_B)$

with $\Pi_{A \to D}$, $\Pi_{B \to E}$ linear maps, \mathcal{S}_A^+ , \mathcal{S}_B^+ the set of density operators, and \mathcal{A}_A , \mathcal{A}_B affine subspaces of matrices.