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Motivation: Noisy Channel Coding



Noisy Channel Coding
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Error Correction

m bits are subject to noise modelled by N(y|x), find encoder e and
decoder d to maximize probability p(N, m) of retrieving m bits



Noisy Channel Coding (continued)

» Fixed number of bits m and noise model N gives bilinear
optimization

1 _ .
p(N,m) =max == 5 N(b)d(ily)e(xli)
(e7d) 2 X7y7/

st Ye(ri) =1, 0<e(xi) <1

X

Y dily) =1, 0<d(ily) <

» Approximating p(N, m) up to multiplicative factor better than
(1-e7") is NP-hard in the worst case [Barman & Fawzi 18]



Noisy Channel Coding (continued)

» Forthe linear program [Hayashi 09, Polyanski et al. 10]
1
Ip(N,m) =max — > N(y|X)r
(,m) =max = SNGH0r

st Yong <1, Y ope=2"
X

X

Iy £ Pxy 0 < Ty Px 1

we have the approximation [Barman & Fawzi 18]

p(N,m) <lp(N,m) < -p(N,m)

1—e!

» Outer bound complemented by polynomial time
(1-e7")-multiplicative approximation algorithms



Quantum Noisy Channel Coding

» Main question: Similar results for quantum error correction?
[Matthews 12, Leung & Matthews 15]
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Quantum Error Correction

Find encoder £ and decoder D to maximize quantum probability
F(N',m) of retrieving m qubits



Quantum Noisy Channel Coding (continued)

» Near-term quantum devices are of small and intermediate scale
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» Tailor-made approximation algorithms for encoder/ decoder?

Optimize Quantum Information Processing

Develop mathematical toolbox rooted in optimization theory



Quantum Noisy Channel Coding (continued)

£ N D
(Dm ‘7 W(Dm

» m qubits with quantum noise model A/ leads to quantum
channel fidelity

F(N,m) := max F((Dm, ((DoNo€) ®Z)((Dm))

st.  &,D quantum operations
(+ physical constraints)

with fidelity F(p, 0) = |/p\/0|?.



Quantum Noisy Channel Coding (continued)

v

Via Choi-Jamiotkowski becomes bilinear optimization

F(N, m) = max O’;dg -Tr [(J;Aé’ ® @Ag) (E/ﬂ ® DBE)]
18

14
st. Eg>0, Ea=—, Dgg =0, Dg = —
AA A dA BB B dB

with product Choi states £,; ® Dgg (where dy = dg = 2™).

v

At least as hard as classical problem, approximate solutions?

v

Inner bounds on figure of merit via from any feasible solution
via, e.g.,

» physical intuition [Bennett et al. 96]

» iterative see-saw methods [Reimpell & Werner 05]

v

Main question: Outer bounds?



Quantum Noisy Channel Coding (continued)

» Quantum channel fidelity stays the same with free shared
randomness assistance

F(N,n) =max  dsds - Tr [(J;g ® sz ) (Z pifis ® D’BB)]

st. pi20, Y. pi=1

iel

. . o o
E;>0, Dig 20, Fy=—, Dy=—2 Viel
A ds

and leads to separable Choi states )", p/-ELVi ® DEB'

» Idea: Find outer approximations on the set of separable Choi
states SEP(AA|BB)

» NB: Strong hardness for quantum separability problem known
[Barak et al. 12]



De Finetti Theorems



Monogamous Entanglement

» Quantum states p,g are called k-shareable if
Pagt = Py, With Dag, = 0ag VJ € [K]

= characterizes separable states [Stoermer 69, Doherty et al. 02]

De Finetti for Quantum States

For k-shareable quantum states p,z we have that [Christandl et al. 07]

i i
Pag — ZPIOA ® g

2
. G5
i€l k

1

with probabilities {p;} e and quantum states oy, wj Vi € /.

> Use pyge = (Za ® Tige ) (Pygr) for g € &, —the symmetric group
of k elements



k-shareable Choi States

» Non-signalling: A - (8B)f and B, - (BB)*~' [Duan & Winter 16]

» Set of k-shareable Choi states SH’;, (44|BB) characterizes set of
separable Choi states SEPr(AA|BB)




k-shareable Quantum Channels

De Finetti for Quantum Channels

For quantum channels with
Nugaz ((Zrome) () = (T @ 1) (Magiipe () Yige, T € &
]
Trg [ Mgtz ()] = Tra [NABMM (d—A ® TYA['])]
A

18,

Trg, [NABMB#(‘)] = Trg, [NABPAB? (Ter[-] © d_s)]

we have that

with probabilities {p; }is and &,

poly(d)

<>_ k

Nag—is = 2 Pi€42® Dg_p

i€l

7 Dy quantum channels Vi € /.



Application: Noisy Channel Coding



Quantum Channel Fidelity

» Shared randomness assisted version

F(N,m) =max dzds-Tr [(Jﬁg ® (DAE) (Z/O{EL@ ® D/Bt)]

st. pi>0, Z,Of=1
i€l
) ) A P
Ez>0,Dgs >0, Es= =, Dg=— Viel
AR BB AT BTG,

» Idea: Approximate separable Choi states ¥ piE,; ® Dl by
k-shareable Choi states Wia(es)

» k-shareable has semi-definite representation



Outer Bound Approximations

» Efficiently computable semi-definite program outer bounds
sdp, (N, m) :=max  dids - Tr [(Nig, (P1) ® Oz, ) Waie,5, ]

s.t. WAZ\(BE)f >0, Tr I:WAZ\(BE)ﬁ‘:I =1, WAZ(BB)#‘ = (IA; ® T[(Bé)f) (WAAT(BE)f)

W I

Waesy: = 5m ® Wiasyo> Wiiacesy-ts, = Winaay @ e
PPT (AZ\ : (Bé)f) >0 (positive partial transpose)
» With approximation guarantee to quantum channel fidelity
poly(d)
[spdi (N, m) = FN m)l <\ =

» Previous: [Matthews 12, Leung & Matthews 15, Tomamichel et
al. 16, Wanget al. 16/17] and [Rozpedek et al. 18, Kaur et al. 18]



Certifying Optimality of Relaxations

» Compare classical linear program relaxation [Barman & Fawzi 18]

p(N,m) <lp(N,m) < -p(N,m)

1—e!
» No finite approximation guarantee for F(N',m) < sdp, (N, m)

Rank Loop Conditions

If for k € N there exists [ € N such that
rank (WAZ\(BE)ﬁ) < max {rank (WAZ\(BE)4 ) ,rank (W(Bg)lk-/)}

then we have equality sdp, (N, m) = F(N,m)

» Proofvia [Navascués et al. 09]



Numerical Example Relaxations

» Uniform noise corresponds to qubit depolarizing channel

Depp:pﬁp.%m—p)-p with p € [0, 4/3].

Question

What is the optimal code for reliably storing m = 1 qubit in noisy 5
qubit quantum memory, that is, p (Dep$>,1) = ?

» Analytical [Bennett et al. 96] as well as see-saw [Reimpell &
Werner 05] lower bounds, our work upper bounds

D (Dep?S, 1) < sdpy (Dep?S, 1)



Numerical Example Relaxations (continued)

channel fidelity

» Exploiting symmetries for analytical dimension reduction for
first level sdp; (Dep§”, 1) [Wang et al. 16/17] gives

channel fidelity
5 o s
E > 4
T

°
o

0.5 T
parameter p of the depolarizing channel

. . . . . . . . . ; [Reimpell & Werner 05] lower bounds
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depolarizing probability

» pe[1,4/3] [Reimpell & Werner 05] optimal, p € [0, 0.18] room for
improved codes

413



Conclusion



Conclusion

» Quantum noisy channel coding (one-shot) via de Finetti
theorem for quantum channels

» Optimization theory tools to numerically study quantum error
correction for practical settings

» Variations possible, e.g., classical communication assistance,
physical constraints

Open Questions

» Numerics via dimension reduction? Polynomial size + symdpoly
numerics [Rosset]?
» Settings with provably good quantum meta-converse?

» Optimal quantum de Finetti: dimension dependence, minimal
conditions?



Proofs Ideas (board)




Proof Ideas: De Finetti for Choi States

Let PaA(8B)- be quantum states such that form e &,

Puaeay: = (Zaa © T(ggy ) (Paacssy)
Ta
Paeedy; = g, @ Ped)

Ig,

Peeye, = Per)i ® g,
Then, we have that

poly(d)

S [ A

k

i i
HDAABB ~ D PiOj; ® Wp

iel 1

with probabilities {p;}; and o}, = ;—i, wh = ;,—BB Viel



Proof Ideas: De Finetti with Linear Constraints

Let Pk be quantum states, Au—c,, 8¢, linear maps, and X¢,, Ve,
operators such that for m e &,

(IA ® T[Bﬁ) (Pag6) = Pyar k-shareable on B
(/\A_,CA ®IB$) (pABﬁ) =X, ® Ppk linear constraint on A
Mg,-cs(Par) = P ® Yoy linear constraint on B.

Then, we have that

. \/dg(d8+1)2logdA
k

HpAB - ZP/’O;\ ® 0325
jel !
with probabilities {p;}; and quantum states oy, wj; such that Vi e/

Mo, (oIA) = Xc, and Bcs ((A),B) =Ye,.



Application: Bilinear Optimization

De Finetti with linear constraints gives outer hierarchy for programs
of the bilinear form

max Tr[/—/(D@E)]
st. DeSp,EeSr

where H is a matrix and Sp and S are positive semi-definite
representable sets of the form

Sp=Masp(SinAy) and  Se=Maoe(SEnAg)

with Masp, Mpe linear maps, S, S the set of density operators, and
Ay, Ag affine subspaces of matrices.
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