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Introduction: Hypothesis Testing
Discriminate between two sequences of quantum states ρn, σn on H⊗n – null and
alternative hypothesis – with two outcome POVM {Mn, (1−Mn)}. Mn is
associated with accepting ρn and (1−Mn) with accepting σn.

This leads to two types of errors

αn(Mn) := Tr
[
ρn(1−Mn)

]
Type 1 error βn(Mn) := Tr

[
σnMn

]
Type 2 error.

Symmetric setting for ρn = ρ⊗n, σn = σ⊗n with

ξn(ρ, σ) := inf
0≤Mn≤1

αn(Mn)

2
+
βn(Mn)

2

leads to

Quantum Chernoff bound [Audenaert et al., PRL 07]

ξ(ρ, σ) := lim
n→∞

−
log ξn(ρ, σ)

n
= − log min

0≤s≤1
Tr
[
ρsσ1−s

]
.



Introduction: Asymmetric Hypothesis Testing

Same two type of errors αn(Mn), βn(Mn) and ρn = ρ⊗n, σn = σ⊗n but
asymmetric setting with

βn
ε(ρ, σ) := inf

0≤Mn≤1

{
βn(Mn)

∣∣αn(Mn) ≤ ε
}
.

leads to asymptotic error exponent

Quantum Stein’s lemma [Hiai and Petz, CMP 91]

β(ρ, σ) := lim
n→∞
ε→0

−
log βn

ε(ρ, σ)

n
= D(ρ‖σ) := Tr

[
ρ (log ρ− log σ)

]
.

Note: this led to the definition of the quantum relative entropy D(ρ‖σ).

Motivation: fundamental task in quantum statistics + underlying technical core
problem for many applications in QIT as, e.g., quantum channel coding, quantum
illumination, quantum reading, etc. [very many references].



Composite Hypothesis Testing: Setup
Composite null and alternative hypotheses

Sn :=

{∫
ρ⊗n dν︸ ︷︷ ︸

=:ρn(ν)

∣∣∣∣ρ ∈ S} vs. Tn :=

{∫
σ⊗n dµ︸ ︷︷ ︸

=:σn(µ)

∣∣∣∣σ ∈ T }

with S, T sets of quantum states and ν, µ measures on S, T , resp.

For the asymmetric setting we define

βn
ε(S, T ) := inf

0≤Mn≤1

{
sup
µ∈T

Tr [Mnσn(µ)]︸ ︷︷ ︸
=:βn(Mn)

∣∣∣∣ sup
ν∈S

Tr [(1−Mn)ρn(ν)]︸ ︷︷ ︸
=:αn(Mn)

≤ ε
}
.

This leads to the definition of the composite asymptotic error exponent

β(S, T ) := lim
n→∞
ε→0

−
log βn

ε(S, T )

n
.



Composite Hypothesis Testing: Classical Case

If all involved quantum states pairwise commute (classical setting – probability
distributions P,Q) we have

Composite Stein’s lemma [Levitan and Merhav, IEEE 02]

β(S, T ) = inf
P∈S
Q∈T

β(P,Q) = inf
P∈S
Q∈T

D(P‖Q) with Kulback-Leibler divergence.

Question: does this hold in the general non-commutative case as well? Yes, if
T = {σ}, i.e., only composite null hypothesis [Hayashi, JPA 02].

Some related cases are understood as well [Brandão and Plenio, CMP 10] +
[Hayashi and Tomamichel, JMP 16]. However, the general case remained open –
see also [Bjelaković et al., CMP 05].

Motivation: fundamental task in quantum statistics, composite version of
applications in QIT (e.g., network quantum Shannon theory).



Composite Hypothesis Testing: Quantum Case

Our main result is regularized formula

Composite quantum Stein’s lemma [this talk]

β(S, T ) = lim
n→∞

1

n
inf
ρ∈S
µ∈T

D

(
ρ⊗n

∥∥∥∥∫ σ⊗n dµ(σ)

)
6= inf
ρ∈S
σ∈T

D(ρ‖σ) in general.

Hence, in general D
(
ρ⊗n

∥∥∫ σ⊗n dµ(σ)
)
� n · infσ∈T D(ρ‖σ).

Converse: β(S, T ) ≤ RHS based on MONO of quantum relative entropy under
quantum channels [Hiai and Petz, CMP 91].

Achievability: β(S, T ) ≥ RHS via
1 measure: post-measurement probability distributions
2 apply classical composite Stein’s lemma
3 mathematical properties of quantum entropy

Regularization: examples + novel quantum entropy inequalities.



Proof Idea: Classical Strategy

β(S, T ) := lim
ε→0

lim
n→∞

−
log βn

ε(S, T )

n

For n ∈ N, ε ∈ (0, 1), and POVM Nn with Pn := Nn(ρ⊗n),Qn := Nn(σ⊗n)
composite Stein’s lemma for probability distributions gives achievability bound

− log βn
ε(S, T ) ≥ inf

ρ∈S
σ∈T

D
(
Nn(ρ⊗n)

∥∥Nn(σ⊗n)
)
≥ inf
ν∈S
µ∈T

D (Nn(ρn(ν))‖Nn(σn(µ))) .

Optimizing over all POVM Nn we find the measured relative entropy DN (ρ‖σ)
as introduced by [Donald, CMP 86]

−
log βn

ε(S, T )

n
≥

1

n
sup
Nn

inf
ν∈S
µ∈T

D (Nn(ρn(ν))‖Nn(σn(µ)))

minimax
=

1

n
inf
ν∈S
µ∈T

sup
Nn

D (Nn(ρn(ν))‖Nn(σn(µ)))︸ ︷︷ ︸
=:DN (ρn(ν)‖σn(µ))

.



Proof Idea: Properties of Quantum Entropy
Hence, so far we have

β(S, T ) ≥ lim
n→∞

1

n
inf
ν∈S
µ∈T

DN (ρn(ν)‖σn(µ))

and it remains to prove that asymptotically

1

n
inf
ν∈S
µ∈T

DN (ρn(ν)‖σn(µ))
(i)

≥
1

n
inf
ν∈S
µ∈T

D(ρn(ν)‖σn(µ))
(ii)

≥
1

n
inf
ρ∈S
µ∈T

D
(
ρ⊗n

∥∥σn(µ)
)
.

Using asymptotic spectral pinching [Hayashi, JPA 02] + [Sutter et al., CMP 17]
it can be shown

DN (ρ‖σ) ≥ D(ρ‖σ)− log |spec(σ)|
(

MONO: DN (ρ‖σ) ≤ D(ρ‖σ)
)
.

However, since σn(µ) =
∫
σ⊗n dµ(σ) is permutation invariant, we have by

Schur-Weyl duality |spec(σn(µ))| ≤ poly(n) and step (i) follows.

Step (ii) is deduced from the quasi-convexity of the von Neumann entropy.



Examples

Composite quantum Stein’s lemma [this talk]

β(S, T ) = lim
n→∞

1

n
inf
ρ∈S
µ∈T

D

(
ρ⊗n

∥∥∥∥∫ σ⊗n dµ(σ)

)
6= inf
ρ∈S
σ∈T

D(ρ‖σ) in general.

When do we get single-letter formula? From [Hayashi, JPA 02] we have

β (S, T = {σ}) = inf
ρ∈S

D(ρ‖σ).

An example for composite alternative hypotheses: relative entropy of coherence
[Baumgratz et al., PRL 14]

DC(ρ) := inf
σ∈C

D(ρ‖σ) for set of states C diagonal in a fixed basis {|c〉}.



Examples: Relative Entropy of Coherence

Goal: discrimination problem with asymptotic error exponent given by the relative
entropy of coherence

DC(ρ) := inf
σ∈C

D(ρ‖σ) for set of states C diagonal in a fixed basis {|c〉}.

Null hypothesis: the fixed states ρ⊗n

Alternative hypothesis: convex sets of iid coherent states Cn :=
{∫

σ⊗n dµ(σ)
∣∣σ ∈ C}

β ({ρ} , C) = lim
n→∞

1

n
inf
µ∈C

D

(
ρ⊗n

∥∥∥∥∫ σ⊗n dµ(σ)

)
= DC(ρ).

More examples possible, e.g., quantum mutual information for product state
testing (cf. [Hayashi and Tomamichel, JMP 16]).



Examples: Regularization and Entropy Inequalities I
Goal: give discrimination problem such that

lim
n→∞

1

n
inf
ρ∈S
µ∈T

D

(
ρ⊗n

∥∥∥∥∫ σ⊗n dµ(σ)

)
6= inf
ρ∈S
σ∈T

D(ρ‖σ)

Quantum Markov testing (see also [Cooney et al., PRA 16])

Null hypothesis: the fixed state ρ⊗n
ABC

Alternative hypothesis: the convex sets of quantum Markov iid states

Rn :=
{∫

((IA ⊗RC→BC )(ρAC ))⊗n dµ(R)
}

with RC→BC local

quantum channels

For this example we claim that our formula does not become single-letter

β ({ρABC} ,R) = lim
n→∞

1

n
inf
µ∈R

D

(
ρ⊗n
ABC

∥∥∥∥∫ ((IA ⊗RC→BC )(ρAC )
)⊗n

dµ(R)

)
6= inf
R

D (ρABC‖(IA ⊗RC→BC )(ρAC )) .



Examples: Regularization and Entropy Inequalities II

lim
n→∞

1

n
inf
µ∈R

D

(
ρ⊗n
ABC

∥∥∥∥∫ ((IA ⊗RC→BC )(ρAC )
)⊗n

dµ(R)

)
� inf
R

D (ρABC‖(IA ⊗RC→BC )(ρAC )) .

We show improved lower bound on quantum conditional mutual information
(CQMI) [Sutter et al., CMP 17], relaxed to (see also [Brandão et al., PRL 15])

I (A : B|C)ρ := D(ρABC‖ρA ⊗ ρBC )− D(ρAC‖ρA ⊗ ρC )

≥ lim
n→∞

1

n
inf
µ∈R

D

(
ρ⊗n
ABC

∥∥∥∥∫ ((IA ⊗RC→BC )(ρAC )
)⊗n

dµ(R)

)
.

However, [Fazwi and Fawzi, arXiv 17] give explicit quantum state ρABC with

I (A : B|C)ρ � inf
R

D (ρABC‖(IA ⊗RC→BC )(ρAC )) .

Note: use of additive CQMI nicely allows to circumvent asymptotics.



Conclusion

Composite quantum Stein’s lemma [this talk]

β(S, T ) = lim
n→∞

1

n
inf
ρ∈S
µ∈T

D

(
ρ⊗n

∥∥∥∥∫ σ⊗n dµ(σ)

)
6= inf
ρ∈S
σ∈T

D(ρ‖σ) in general.

Single-letter examples possible, even with refinements: Hoeffding bound, strong
converse exponent, second-order expansion as in [Hayashi and Tomamichel, JMP
16] + [Tomamichel and Hayashi, arXiv 15].

Symmetric setting: open question about composite quantum Chernoff bound

ξ(ρ, σ) = − log min
0≤s≤1

Tr
[
ρsσ1−s

]
⇒ ξ(S, T )

?
= inf
ρ∈S
σ∈T

ξ(ρ, σ)

only known up to a factor of two [Audenaert and Mosonyi, JMP 14].

Applications in QIT, e.g., network quantum Shannon theory [Qi et al., arXiv 17]?



Extra: Entropy inequalities

CQMI bounds [Junge et al., arXiv 15], [Sutter et al., CMP 17], [this talk]

For any quantum state ρABC the CQMI is lower bounded by the incomparable bounds

I (A : B|C)ρ ≥ −
∫
β0(t) log

∥∥∥∥√ρABC√σ[t]
ABC

∥∥∥∥2

1

dt

I (A : B|C)ρ ≥ DN

(
ρABC

∥∥∥∥∫ β0(t)σ
[t]
ABC dt

)
I (A : B|C)ρ ≥ lim sup

n→∞

1

n
D

(
ρ⊗n
ABC

∥∥∥∥∫ β0(t)
(
σ

[t]
ABC

)⊗n
dt

)
,

where β0(t) := π
2

(cosh(πt) + 1)−1 is a universal probability distribution and

σ
[t]
ABC :=

(
IA ⊗ R

[t]
C→BC

)
(ρAC ) with R

[t]
C→BC (·) := ρ

1+it
2

BC

(
ρ
−1−it

2
C (·)ρ

−1+it
2

C

)
ρ

1−it
2

BC

are rotated Petz local recovery quantum channels.
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