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Introduction: Hypothesis Testing

o Discriminate between two sequences of quantum states pp, o, on H®" — null and
alternative hypothesis — with two outcome POVM {M,, (1 — M,)}. M, is
associated with accepting p, and (1 — M,) with accepting .

@ This leads to two types of errors
an(Mpy) :=Tr [pn(l — M,,)} Type 1 error  Bn(Mp) := Tr [U,,M,,] Type 2 error.
e Symmetric setting for p, = p®", 0, = 0®" with

L . Oén(Mn) ﬁn(Mn)
én(P, U) T Oﬁll\r/‘lfgl 2 + 2

leads to

Quantum Chernoff bound [Audenaert et al., PRL 07]

. log n(p; 0) . 1—
o) = lim ——————= = —| m T o).
&(p,o) =i . og min Tr[p°c’ ]
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Introduction: Asymmetric Hypothesis Testing

@ Same two type of errors an(Mp), Bn(Ms) and pn = p®" 0n = ©" but
asymmetric setting with

82(p.0) = _inf_ {Ba(M)|an(My) < <}.

leads to asymptotic error exponent

Quantum Stein's lemma [Hiai and Petz, CMP 91]

_log B2(p, o)

B(p,o) == lim = D(p|lo) :=Tr[p(logp —log o) ].

n— 00
e—0

o Note: this led to the definition of the quantum relative entropy D(p||c).

o Motivation: fundamental task in quantum statistics + underlying technical core
problem for many applications in QIT as, e.g., quantum channel coding, quantum
illumination, quantum reading, etc. [very many references].
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Composite Hypothesis Testing: Setup

o Composite null and alternative hypotheses

Sn:={/p®"dl/ pES} vs. 7}::{/0’®"d,u
— —

=:pn(v) =on(n)

O'ET}

with S, 7T sets of quantum states and v, u measures on S, 7T, resp.

o For the asymmetric setting we define

s = ot { sup Te My ()] | s T (1 = M) (1)] < .

::Bn(Mn) :1D¢n(Mn)
o This leads to the definition of the composite asymptotic error exponent

log B(S.T)

n

B(S,T) = Jim

e—0
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Composite Hypothesis Testing: Classical Case

@ If all involved quantum states pairwise commute (classical setting — probability
distributions P, Q) we have

Composite Stein's lemma [Levitan and Merhav, IEEE 02]

B(S,T) = Plgfs B(P,Q) = P[gfg D(P||Q) with Kulback-Leibler divergence.
QeT QeT

@ Question: does this hold in the general non-commutative case as well? Yes, if
T ={o}, i.e., only composite null hypothesis [Hayashi, JPA 02].

@ Some related cases are understood as well [Brand3o and Plenio, CMP 10] +
[Hayashi and Tomamichel, JMP 16]. However, the general case remained open —
see also [Bjelakovi¢ et al., CMP 05].

@ Motivation: fundamental task in quantum statistics, composite version of
applications in QIT (e.g., network quantum Shannon theory).
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Composite Hypothesis Testing: Quantum Case
@ Our main result is regularized formula

Composite quantum Stein’s lemma [this talk]

1
= lim = i ®n ®n i i
B(S,T) = nllm - plg‘fS D (p /0 d,u,(a)) e p|2fs D(p||o) in general.
neT oeT

o Hence, in general D (p®"|| [ o®" du(c)) # n-infye7 D(p||0).
Converse: 8(S,T) < RHS based on MONO of quantum relative entropy under
quantum channels [Hiai and Petz, CMP 91].
@ Achievability: 8(S,7T) > RHS via
@ measure: post-measurement probability distributions

@ apply classical composite Stein’s lemma
© mathematical properties of quantum entropy

o Regularization: examples + novel quantum entropy inequalities.
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Proof Idea: Classical Strategy
B(S,T) = lim lim — 28BS T)

e—0n—o0 n

e For n€ N, g € (0,1), and POVM N, with Pp := Ny(p®"), Qn := Np(o®")
composite Stein's lemma for probability distributions gives achievability bound
—log (5, T) 2 inf D (Na(p®™)[[Na(0®™)) > Jnf D (Na(pn(¥))INn(on(1))) -

oceT HnET

e Optimizing over all POVM N, we find the measured relative entropy Dx(p||c)
as introduced by [Donald, CMP 86]

18 BST) S Lo inf D (Na(pn() [N (@n (1))
TN

minimax 1 .
= — inf_sup D (Na(pn())[Nn(on(1))) -
nvesS n,
neT

=:Dar(pn(v)llon(p))
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Proof Idea: Properties of Quantum Entropy
@ Hence, so far we have
1
B(S,T) > lim = inf Dy (pn(v)llon(p))
n—oo n veS
neT

and it remains to prove that asymptotically

L int Dac(pn(@)llon()) = - inf. Dlp()llon()) > > inf. D (p2"on(s))
n vesS " n ~ nves " " ~ n peS " ’
weT HET neT

o Using asymptotic spectral pinching [Hayashi, JPA 02] + [Sutter et al., CMP 17]
it can be shown

D (plle) > D(pllor) — log spec(a)|  (MONO: Dy (plo) < D(pl|7)).

However, since on(p) = [ 0®" du(o) is permutation invariant, we have by
Schur-Weyl duality |spec(on(p))| < poly(n) and step (i) follows.

o Step (ii) is deduced from the quasi-convexity of the von Neumann entropy. O
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Examples

Composite quantum Stein’s lemma [this talk]

1
S,T)= lim = inf D(p®| [o®"a DOl )
B(S,T) amo ,3'23 (P /U ,u(cr)) = plgs (pllo) in genera
reET oceT

o When do we get single-letter formula? From [Hayashi, JPA 02] we have
B(S, T ={c}) = inf. D(p|lo).
peES

@ An example for composite alternative hypotheses: relative entropy of coherence
[Baumgratz et al., PRL 14]

Dc(p) :== Gll’éf:: D(pl|o) for set of states C diagonal in a fixed basis {|c)}.
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Examples: Relative Entropy of Coherence

@ Goal: discrimination problem with asymptotic error exponent given by the relative
entropy of coherence

Dc(p) = u;fc D(p||o) for set of states C diagonal in a fixed basis {|c)}.

Null hypothesis: the fixed states p®”
Alternative hypothesis: convex sets of iid coherent states C, := {f o®n du(a)|a S C}

.1 n
A(p},€)= lim — inf D (p®

[ o®" aut@)) = oc(o)

o More examples possible, e.g., quantum mutual information for product state
testing (cf. [Hayashi and Tomamichel, JMP 16]).
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Examples: Regularization and Entropy Inequalities |

@ Goal: give discrimination problem such that

1
lim — inf D(
n—oo n pES

T

# du(e) ) # inf D(oll)
oceT

o Quantum Markov testing (see also [Cooney et al., PRA 16])

Null hypothesis: the fixed state p%é’c
Alternative hypothesis: the convex sets of quantum Markov iid states

Rnp:= {f ((IA ® RC—)BC)(pAC))@m du(R)} with R¢_gc local
quantum channels

o For this example we claim that our formula does not become single-letter

5 ({oascy R) = tim = inf D (058 | [ (@40 Reoac)(pac) ™" au())

# inf D (pascll(Za ® Resc)(pac)) -
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Examples: Regularization and Entropy Inequalities Il

.1 ®n
Jim L int 0 (| [ (@40 Re-rac)oac)*" an()

# inf D (pasc|(Za ® Rc—pc)(pac)) -

o We show improved lower bound on quantum conditional mutual information
(CQMI) [Sutter et al., CMP 17], relaxed to (see also [Brand3o et al., PRL 15])
I(A: BIC), == D(pascllpa ® pec) — D(pacllpa ® pc)

> lim 1 inf D(p;‘@gc /((ZA@RC—)BC)(pAC))®n d,u(R))'

n—oo n pe

@ However, [Fazwi and Fawzi, arXiv 17] give explicit quantum state pagc with
I(A: BIC)p % inf D (pac||(Ta ® Reac)(pac)) - O

o Note: use of additive CQMI nicely allows to circumvent asymptotics.
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Conclusion

Composite quantum Stein’s lemma [this talk]

1
— i 28 ®n
ﬁ(S,])_nlln;onligst(p
HET

/a®" d,u(a)) # inf_D(pl||o) in general.
p€«79_
ogeE

o Single-letter examples possible, even with refinements: Hoeffding bound, strong
converse exponent, second-order expansion as in [Hayashi and Tomamichel, JMP
16] + [Tomamichel and Hayashi, arXiv 15].

@ Symmetric setting: open question about composite quantum Chernoff bound
,0) = —log_min Tr[p°0' %] = &(S,T) = inf &(p,
&(p,0) og min, rlp*o ] = &S, T) ;giﬁ(p o)
oc

only known up to a factor of two [Audenaert and Mosonyi, JMP 14].
@ Applications in QIT, e.g., network quantum Shannon theory [Qi et al., arXiv 17]?
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Extra: Entropy inequalities

CQMI bounds [Junge et al., arXiv 15], [Sutter et al., CMP 17], [this talk]

For any quantum state pagc the CQMI is lower bounded by the incomparable bounds
A

‘ PABC\/ P aBc dt
1

/50 t)UABC )
/Bo(t) UE]BC)@M dt),

where Bo(t) := 5 (cosh(rt) + 1)~1 is a universal probability distribution and

I(A: B|C), > —/,Bo(t) log

I(A: B|C)p > Dy (PABC

1
I(A: B|C), > limsup =D (p;‘f’gc
n—oo N

(1 [ Lyt —1-it “1gie\  1—it
TaBC = (IA ® Rc-»sc) (pac) with RC—>BC( ) == ppg¢ (Pc 2 ()pc? ) PEé

are rotated Petz local recovery quantum channels.
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