On Composite Quantum Hypothesis Testing

Mario Berta (Department of Computing)

with Fernando Brandão and Christoph Hirche - arXiv:1709.07268

Overview

- Introduction
- Composite Hypothesis Testing
- Proof Idea
- Examples
- Conclusion

Introduction: Hypothesis Testing

- Discriminate between two sequences of quantum states ρ_n, σ_n on $\mathcal{H}^{\otimes n}$ **null and alternative hypothesis** with two outcome POVM $\{M_n, (1-M_n)\}$. M_n is associated with accepting ρ_n and $(1-M_n)$ with accepting σ_n .
- This leads to two types of errors

$$\alpha_n(M_n) := \operatorname{Tr} \left[\rho_n(1 - M_n) \right]$$
 Type 1 error $\beta_n(M_n) := \operatorname{Tr} \left[\sigma_n M_n \right]$ Type 2 error.

• Symmetric setting for $\rho_n = \rho^{\otimes n}, \sigma_n = \sigma^{\otimes n}$ with

$$\xi_n(\rho,\sigma) := \inf_{0 < M_n < 1} \frac{\alpha_n(M_n)}{2} + \frac{\beta_n(M_n)}{2}$$

leads to

Quantum Chernoff bound [Audenaert et al., PRL 07]

$$\xi(\rho,\sigma) := \lim_{n \to \infty} -\frac{\log \xi_n(\rho,\sigma)}{n} = -\log \min_{0 \le s \le 1} \operatorname{Tr}\left[\rho^s \sigma^{1-s}\right].$$

Introduction: Asymmetric Hypothesis Testing

• Same two type of errors $\alpha_n(M_n)$, $\beta_n(M_n)$ and $\rho_n = \rho^{\otimes n}$, $\sigma_n = \sigma^{\otimes n}$ but asymmetric setting with

$$\beta_{\varepsilon}^{n}(\rho,\sigma):=\inf_{0\leq M_{n}\leq 1}\big\{\beta_{n}(M_{n})\big|\alpha_{n}(M_{n})\leq \varepsilon\big\}.$$

leads to asymptotic error exponent

Quantum Stein's lemma [Hiai and Petz, CMP 91]

$$\beta(\rho,\sigma) := \lim_{\substack{n \to \infty \\ n \to \infty}} -\frac{\log \beta_\varepsilon^n(\rho,\sigma)}{n} = D(\rho\|\sigma) := \mathsf{Tr}\left[\rho\left(\log \rho - \log \sigma\right)\right].$$

- Note: this led to the definition of the quantum relative entropy $D(\rho \| \sigma)$.
- Motivation: fundamental task in quantum statistics + underlying technical core problem for many applications in QIT as, e.g., quantum channel coding, quantum illumination, quantum reading, etc. [very many references].

Composite Hypothesis Testing: Setup

Composite null and alternative hypotheses

$$\mathcal{S}_n := \left\{ \underbrace{\int
ho^{\otimes n} \, \mathrm{d}
u}_{=:
ho_n(
u)} \middle|
ho \in \mathcal{S}
ight\} \quad \text{vs.} \quad \mathcal{T}_n := \left\{ \underbrace{\int \sigma^{\otimes n} \, \mathrm{d} \mu}_{=:\sigma_n(\mu)} \middle| \sigma \in \mathcal{T}
ight\}$$

with S, T sets of quantum states and v, μ measures on S, T, resp.

• For the asymmetric setting we define

$$\beta_{\varepsilon}^{n}(\mathcal{S}, \mathcal{T}) := \inf_{0 \leq M_{n} \leq 1} \left\{ \underbrace{\sup_{\mu \in \mathcal{T}} \operatorname{Tr}[M_{n}\sigma_{n}(\mu)]}_{=:\beta_{n}(M_{n})} \middle| \underbrace{\sup_{\nu \in \mathcal{S}} \operatorname{Tr}[(1 - M_{n})\rho_{n}(\nu)]}_{=:\alpha_{n}(M_{n})} \leq \varepsilon \right\}.$$

• This leads to the definition of the composite asymptotic error exponent

$$\beta(\mathcal{S}, \mathcal{T}) := \lim_{\substack{n \to \infty \\ \varepsilon \to 0}} -\frac{\log \beta_{\varepsilon}^{n}(\mathcal{S}, \mathcal{T})}{n}.$$

Composite Hypothesis Testing: Classical Case

 If all involved quantum states pairwise commute (classical setting – probability distributions P, Q) we have

Composite Stein's lemma [Levitan and Merhav, IEEE 02]

$$\beta(\mathcal{S},\mathcal{T}) = \inf_{\substack{P \in \mathcal{S} \\ Q \in \mathcal{T}}} \beta(P,Q) = \inf_{\substack{P \in \mathcal{S} \\ Q \in \mathcal{T}}} D(P\|Q) \text{ with Kulback-Leibler divergence.}$$

- Question: does this hold in the general non-commutative case as well? Yes, if $\mathcal{T} = \{\sigma\}$, i.e., only composite null hypothesis [Hayashi, JPA 02].
- Some related cases are understood as well [Brandão and Plenio, CMP 10] +
 [Hayashi and Tomamichel, JMP 16]. However, the general case remained open –
 see also [Bjelaković et al., CMP 05].
- Motivation: fundamental task in quantum statistics, composite version of applications in QIT (e.g., network quantum Shannon theory).

Composite Hypothesis Testing: Quantum Case

Our main result is regularized formula

Composite quantum Stein's lemma [this talk]

$$\beta(\mathcal{S},\mathcal{T}) = \lim_{n \to \infty} \frac{1}{n} \inf_{\substack{\rho \in \mathcal{S} \\ \mu \in \mathcal{T}}} D\left(\rho^{\otimes n} \left\| \int \sigma^{\otimes n} \, \mathrm{d}\mu(\sigma) \right) \neq \inf_{\substack{\rho \in \mathcal{S} \\ \sigma \in \mathcal{T}}} D(\rho\|\sigma) \text{ in general.}$$

- Hence, in general $D\left(\rho^{\otimes n} \| \int \sigma^{\otimes n} d\mu(\sigma)\right) \ngeq n \cdot \inf_{\sigma \in \mathcal{T}} D(\rho \| \sigma)$.
- Converse: β(S,T) ≤ RHS based on MONO of quantum relative entropy under quantum channels [Hiai and Petz, CMP 91].
- Achievability: $\beta(S, T) \ge RHS$ via
 - measure: post-measurement probability distributions
 - apply classical composite Stein's lemma
 - mathematical properties of quantum entropy
- Regularization: examples + novel quantum entropy inequalities.

Proof Idea: Classical Strategy

$$\beta(\mathcal{S}, \mathcal{T}) := \lim_{\varepsilon \to 0} \lim_{n \to \infty} -\frac{\log \beta_{\varepsilon}^{n}(\mathcal{S}, \mathcal{T})}{n}$$

• For $n \in \mathbb{N}$, $\varepsilon \in (0,1)$, and POVM \mathcal{N}_n with $P_n := \mathcal{N}_n(\rho^{\otimes n})$, $Q_n := \mathcal{N}_n(\sigma^{\otimes n})$ composite Stein's lemma for probability distributions gives achievability bound

$$-\log \beta_{\varepsilon}^{n}(\mathcal{S}, \mathcal{T}) \geq \inf_{\substack{\rho \in \mathcal{S} \\ \sigma \in \mathcal{T}}} D\left(\mathcal{N}_{n}(\rho^{\otimes n}) \middle\| \mathcal{N}_{n}(\sigma^{\otimes n})\right) \geq \inf_{\substack{\nu \in \mathcal{S} \\ \mu \in \mathcal{T}}} D\left(\mathcal{N}_{n}(\rho_{n}(\nu)) \middle\| \mathcal{N}_{n}(\sigma_{n}(\mu))\right).$$

• Optimizing over all POVM \mathcal{N}_n we find the measured relative entropy $D_{\mathcal{N}}(\rho\|\sigma)$ as introduced by [Donald, CMP 86]

$$-\frac{\log \beta_{\varepsilon}^{n}(\mathcal{S}, \mathcal{T})}{n} \geq \frac{1}{n} \sup_{\mathcal{N}_{n}} \inf_{\substack{\nu \in \mathcal{S} \\ \mu \in \mathcal{T}}} D\left(\mathcal{N}_{n}(\rho_{n}(\nu)) \| \mathcal{N}_{n}(\sigma_{n}(\mu))\right)$$

$$\stackrel{\text{minimax}}{=} \frac{1}{n} \inf_{\substack{\nu \in \mathcal{S} \\ \mu \in \mathcal{T}}} \sup_{\mathcal{N}_{n}} D\left(\mathcal{N}_{n}(\rho_{n}(\nu)) \| \mathcal{N}_{n}(\sigma_{n}(\mu))\right).$$

Proof Idea: Properties of Quantum Entropy

• Hence, so far we have

$$\beta(\mathcal{S}, \mathcal{T}) \geq \lim_{n \to \infty} \frac{1}{n} \inf_{\substack{\nu \in \mathcal{S} \\ \mu \in \mathcal{T}}} D_{\mathcal{N}}(\rho_n(\nu) \| \sigma_n(\mu))$$

and it remains to prove that asymptotically

$$\frac{1}{n}\inf_{\substack{\nu \in \mathcal{S} \\ \mu \in \mathcal{T}}} D_{\mathcal{N}}(\rho_n(\nu)\|\sigma_n(\mu)) \overset{(i)}{\geq} \frac{1}{n}\inf_{\substack{\nu \in \mathcal{S} \\ \mu \in \mathcal{T}}} D(\rho_n(\nu)\|\sigma_n(\mu)) \overset{(ii)}{\geq} \frac{1}{n}\inf_{\substack{\rho \in \mathcal{S} \\ \mu \in \mathcal{T}}} D\left(\rho^{\otimes n}\|\sigma_n(\mu)\right).$$

Using asymptotic spectral pinching [Hayashi, JPA 02] + [Sutter et al., CMP 17]
 it can be shown

$$D_{\mathcal{N}}(\rho\|\sigma) \geq D(\rho\|\sigma) - \log|\operatorname{spec}(\sigma)| \quad \Big(\operatorname{MONO:} D_{\mathcal{N}}(\rho\|\sigma) \leq D(\rho\|\sigma)\Big).$$

However, since $\sigma_n(\mu) = \int \sigma^{\otimes n} d\mu(\sigma)$ is permutation invariant, we have by Schur-Weyl duality $|\operatorname{spec}(\sigma_n(\mu))| \leq \operatorname{poly}(n)$ and step (i) follows.

Step (ii) is deduced from the quasi-convexity of the von Neumann entropy.

Examples

Composite quantum Stein's lemma [this talk]

$$\beta(\mathcal{S}, \mathcal{T}) = \lim_{n \to \infty} \frac{1}{n} \inf_{\substack{\rho \in \mathcal{S} \\ \mu \in \mathcal{T}}} D\left(\rho^{\otimes n} \left\| \int \sigma^{\otimes n} d\mu(\sigma) \right) \neq \inf_{\substack{\rho \in \mathcal{S} \\ \sigma \in \mathcal{T}}} D(\rho \| \sigma) \text{ in general.}$$

• When do we get single-letter formula? From [Hayashi, JPA 02] we have

$$\beta(S, T = \{\sigma\}) = \inf_{\rho \in S} D(\rho \| \sigma).$$

 An example for composite alternative hypotheses: relative entropy of coherence [Baumgratz et al., PRL 14]

$$D_{\mathcal{C}}(\rho) := \inf_{\sigma \in \mathcal{C}} D(\rho \| \sigma) \text{ for set of states } \mathcal{C} \text{ diagonal in a fixed basis } \{|c\rangle\}.$$

Examples: Relative Entropy of Coherence

 Goal: discrimination problem with asymptotic error exponent given by the relative entropy of coherence

$$D_{\mathcal{C}}(\rho) := \inf_{\sigma \in \mathcal{C}} D(\rho \| \sigma) \text{ for set of states } \mathcal{C} \text{ diagonal in a fixed basis } \{ |c\rangle \}.$$

Null hypothesis: the fixed states $\rho^{\otimes n}$

Alternative hypothesis: convex sets of iid coherent states $\mathcal{C}_n := \left\{ \int \sigma^{\otimes n} \; \mathrm{d}\mu(\sigma) \middle| \sigma \in \mathcal{C} \right\}$

$$\beta\left(\left\{\rho\right\},\mathcal{C}\right) = \lim_{n \to \infty} \frac{1}{n} \inf_{\mu \in \mathcal{C}} D\left(\rho^{\otimes n} \middle\| \int \sigma^{\otimes n} d\mu(\sigma)\right) = D_{\mathcal{C}}(\rho).$$

 More examples possible, e.g., quantum mutual information for product state testing (cf. [Hayashi and Tomamichel, JMP 16]).

Examples: Regularization and Entropy Inequalities I

Goal: give discrimination problem such that

$$\lim_{n\to\infty} \frac{1}{n} \inf_{\substack{\rho\in\mathcal{S}\\\mu\in\mathcal{T}}} D\left(\rho^{\otimes n} \left\| \int \sigma^{\otimes n} d\mu(\sigma) \right) \neq \inf_{\substack{\rho\in\mathcal{S}\\\sigma\in\mathcal{T}}} D(\rho\|\sigma)$$

• Quantum Markov testing (see also [Cooney et al., PRA 16])

Null hypothesis: the fixed state $\rho_{ABC}^{\otimes n}$

Alternative hypothesis: the convex sets of quantum Markov iid states

$$\mathcal{R}_n := \left\{ \int \left((\mathcal{I}_A \otimes \mathcal{R}_{C \to BC}) (\rho_{AC}) \right)^{\otimes n} \, \mathrm{d}\mu(\mathcal{R}) \right\} \text{ with } \mathcal{R}_{C \to BC} \text{ local quantum channels}$$

• For this example we claim that our formula does not become single-letter

$$\beta\left(\left\{\rho_{ABC}\right\},\mathcal{R}\right) = \lim_{n \to \infty} \frac{1}{n} \inf_{\mu \in \mathcal{R}} D\left(\rho_{ABC}^{\otimes n} \left\| \int \left(\left(\mathcal{I}_{A} \otimes \mathcal{R}_{C \to BC}\right) (\rho_{AC}\right)\right)^{\otimes n} d\mu(\mathcal{R}) \right)$$

$$\neq \inf_{\mathcal{R}} D\left(\rho_{ABC} \left\| \left(\mathcal{I}_{A} \otimes \mathcal{R}_{C \to BC}\right) (\rho_{AC}\right)\right).$$

Examples: Regularization and Entropy Inequalities II

$$\begin{split} &\lim_{n\to\infty}\frac{1}{n}\inf_{\mu\in\mathcal{R}}D\left(\rho_{ABC}^{\otimes n}\left\|\int\left((\mathcal{I}_{A}\otimes\mathcal{R}_{C\to BC})(\rho_{AC})\right)^{\otimes n}\,\mathrm{d}\mu(\mathcal{R})\right)\right.\\ &\not\geq\inf_{\mathcal{R}}D\left(\rho_{ABC}\|(\mathcal{I}_{A}\otimes\mathcal{R}_{C\to BC})(\rho_{AC})\right). \end{split}$$

 We show improved lower bound on quantum conditional mutual information (CQMI) [Sutter et al., CMP 17], relaxed to (see also [Brandão et al., PRL 15])

$$\begin{split} I(A:B|C)_{\rho} &:= D(\rho_{ABC} \| \rho_{A} \otimes \rho_{BC}) - D(\rho_{AC} \| \rho_{A} \otimes \rho_{C}) \\ &\geq \lim_{n \to \infty} \frac{1}{n} \inf_{\mu \in \mathcal{R}} D\left(\rho_{ABC}^{\otimes n} \Big\| \int \left((\mathcal{I}_{A} \otimes \mathcal{R}_{C \to BC})(\rho_{AC}) \right)^{\otimes n} d\mu(\mathcal{R}) \right). \end{split}$$

ullet However, [Fazwi and Fawzi, arXiv 17] give explicit quantum state ho_{ABC} with

$$I(A:B|C)_{\rho} \ngeq \inf_{\mathcal{R}} D\left(\rho_{ABC} \| (\mathcal{I}_A \otimes \mathcal{R}_{C \to BC})(\rho_{AC})\right). \quad \Box$$

Note: use of additive CQMI nicely allows to circumvent asymptotics.

Conclusion

Composite quantum Stein's lemma [this talk]

$$\beta(\mathcal{S},\mathcal{T}) = \lim_{n \to \infty} \frac{1}{n} \inf_{\substack{\rho \in \mathcal{S} \\ \mu \in \mathcal{T}}} D\left(\rho^{\otimes n} \left\| \int \sigma^{\otimes n} \, \mathrm{d}\mu(\sigma) \right) \neq \inf_{\substack{\rho \in \mathcal{S} \\ \sigma \in \mathcal{T}}} D(\rho\|\sigma) \text{ in general.}$$

- Single-letter examples possible, even with refinements: Hoeffding bound, strong converse exponent, second-order expansion as in [Hayashi and Tomamichel, JMP 16] + [Tomamichel and Hayashi, arXiv 15].
- Symmetric setting: open question about composite quantum Chernoff bound

$$\xi(\rho,\sigma) = -\log \min_{0 \leq s \leq 1} \operatorname{Tr}\left[\rho^s \sigma^{1-s}\right] \ \Rightarrow \ \xi(\mathcal{S},\mathcal{T}) \stackrel{?}{=} \inf_{\substack{\rho \in \mathcal{S} \\ \sigma \in \mathcal{T}}} \xi(\rho,\sigma)$$

only known up to a factor of two [Audenaert and Mosonyi, JMP 14].

• Applications in QIT, e.g., network quantum Shannon theory [Qi et al., arXiv 17]?

Extra: Entropy inequalities

CQMI bounds [Junge et al., arXiv 15], [Sutter et al., CMP 17], [this talk]

For any quantum state ho_{ABC} the CQMI is lower bounded by the incomparable bounds

$$\begin{split} &I(A:B|C)_{\rho} \geq -\int \beta_{0}(t)\log\left\|\sqrt{\rho_{ABC}}\sqrt{\sigma_{ABC}^{[t]}}\right\|_{1}^{2} dt \\ &I(A:B|C)_{\rho} \geq D_{\mathcal{N}}\left(\rho_{ABC}\right\|\int \beta_{0}(t)\sigma_{ABC}^{[t]} dt\right) \\ &I(A:B|C)_{\rho} \geq \limsup_{n \to \infty} \frac{1}{n}D\left(\rho_{ABC}^{\otimes n}\right\|\int \beta_{0}(t)\left(\sigma_{ABC}^{[t]}\right)^{\otimes n} dt\right), \end{split}$$

where $\beta_0(t):=rac{\pi}{2}\left(\cosh(\pi t)+1\right)^{-1}$ is a universal probability distribution and

$$\sigma_{ABC}^{[t]} := \left(\mathcal{I}_A \otimes R_{C \to BC}^{[t]} \right) (\rho_{AC}) \text{ with } R_{C \to BC}^{[t]}(\cdot) := \rho_{BC}^{\frac{1+it}{2}} \left(\rho_C^{\frac{-1-it}{2}}(\cdot) \rho_C^{\frac{-1+it}{2}} \right) \rho_{BC}^{\frac{1-it}{2}}$$

are rotated Petz local recovery quantum channels.