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Quantum Reverse Shannon 
Theorem
✤ Previously proved by Bennett, Devetak, Harrow, Shor and Winter [1].
✤ New proof based on one-shot Quantum State Merging [2,3] and the 

Post-Selection Technique for Quantum Channels [4].
✤ Outline:

๏ Understanding the Theorem (Classical and Quantum Shannon 
Theory)

๏ Idea of our Proof
๏ Quantum State Merging
๏ Post-Selection Technique
๏ Other Channel Simulations

[1] arXiv.org/quant-ph:0912.5537
[2] Horodecki et al., Nature 436:673-676, 2005
[3] Berta, arXiv.org/quant-ph:0912.4495
[4] Christandl et al., Phys. Rev. Lett. 102:020504, 2009
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⇒ Asymptotic channel capacity [5]:

Note: Neither back communication nor shared randomness help
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Using shared randomness, at what asymptotic rate can the id-channel simulate a channel Λ?
⇒ C(Λ) as well [6]! I.e. the asymptotic capacity of a channel Λ to simulate another channel 
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[6] Bennett et al., IEEE Trans. Inf. Theory 48(10):2637, 2002
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Note: Maximally entangled states are 
not sufficient, embezzling states needed!
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✤ Definition: A pure, bipartite state of the form

     

where                      , is called embezzling state of index k.

✤ Proposition: Let            and let            be a pure bipartite state of Schmidt rank m. Then 
the transformation

can be accomplished with fidelity better than            for                   with local isometries 
at A and B.

✤ Definition: The fidelity between two density matrices ρ and σ is defined as

and it is a notion of distance on the set of density matrices.
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Our Proof

✤           CPTP map to simulate,
 

✤ Stinespring Dilation:

for some isometry                                                , with
                                                      .

✤ Key Idea:
(i) Local simulation of           at Alice’s side using Stinespring Dilation 
⇒          at Alice’s side.
(ii) Send part B of         to Bob with classical channel and entanglement 
⇒ Bob has                             !

EA!B(⇢A) = trA0(UA!BA0⇢AUA!BA0) =: trA0(�BA0)

�BA0

�B = EA!B(⇢A)

EA!B : S(HA) ! S(HB)

⇢A 7! EA!B(⇢A)

EA!B

EA!B

UA!BA0 : HA ! HB ⌦HA0

dim(HA0)  dim(HA) · dim(HB)

Alice Bob

F
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✤ How much of a given resource is needed to do this?
✤ Our case:                                                       purification, free entanglement, classical 

communication to quantify.
✤ Horodecki et al. [2],                    with classical communication cost       :

✤ One-shot version,              with classical communication cost     for an error   :
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Back to the Proof

✤ CPTP map                                                                                      to simulate.

✤ Local simulation of              and state splitting of          gives 
ε-approximation            of            for a class. comm. cost                      . 
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✤ Definition: Let    be a quantum operation. The diamond norm [8] of    is 
defined as

                                                                       .
The induced metric is a notion of distance for quantum operations.
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The Post-Selection Technique

✤ Christandl et al. [4]: Let       and        be quantum operations that act 
permutation-covariant on a n-partite system                     . Then

where              is a purification of the (de Finetti type) state

with         a pure state on                ,                ,                   and d(.) the 
measure on the normalized pure states on                induced by the 
Haar measure on the unitary group acting on                , normalized to            
.
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permutation-covariant on a n-partite system                     . Then

where              is a purification of the (de Finetti type) state

with         a pure state on                ,                ,                   and d(.) the 
measure on the normalized pure states on                induced by the 
Haar measure on the unitary group acting on                , normalized to            
.

✤ Permutation covariant:

[4] Phys. Rev. Lett. 102:020504, 2009
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✤ Stinespring Dilation:                                                                                                   

✤ Local simulation of               and (optimal) one-shot State Splitting of           gives 
ε-approximation            of            . Using Post-Selection Technique everything works!
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