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Quantum Reverse Shannon
Theorem

* Previously proved by Bennett, Devetak, Harrow, Shor and Winter [1].

* New proof based on one-shot Quantum State Merging [2,3] and the
Post-Selection Technique for Quantum Channels [4].

* Qutline:

+ Understanding the Theorem (Classical and Quantum Shannon
Theory)

* Idea ot our Proof
© Quantum State Merging
- Post-Selection Technique

> Other Channel Simulations

arXiv.org/quant-ph:0912.5537
Horodecki et al., Nature 436:673-676, 2005
Berta, arXiv.org/quant-ph:0912.4495

|
|
|
[4] Christandl et al., Phys. Rev. Lett. 102:020504, 2009
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Shannon’s Classical Noisy

Channel Coding Theorem

Transmitter Alice Receiver Bob

* -l ‘

A: noisy channel

How many bits can Alice transmit on average per use of the channel?
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How many bits can Alice transmit on average per use of the channel?

= Asymptotic channel capacity [5]:
C(A) = max(H(X) + H(A(X)) — H(X, A(X)))
FIORl = s i

[5] Shannon, Bell. Syst. Tech. J. 27:379-423,623-656, 1948



Shannon’s Classical Noisy

Channel Coding Theorem
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How many bits can Alice transmit on average per use of the channel?
= Asymptotic channel capacity [5]:

C(A) = max(H(X) + H(A(X)) - H(X, A(X)))

H(X)=—> pylogp,

Note: Neither back communication nor shared randomness help
[5] Shannon, Bell. Syst. Tech. J. 27:379-423,623-656, 1948



Classical Reverse Shannon
Theorem
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Using shared randomness, at what asymptotic rate can the id-channel simulate a channel A?
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Using shared randomness, at what asymptotic rate can the id-channel simulate a channel A?
= C(A) as well [6]!

[6] Bennett et al., IEEE Trans. Inf. Theory 48(10):2637, 2002
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Using shared randomness, at what asymptotic rate can the id-channel simulate a channel A?

= C(A) as well [6]! L.e. the asymptotic capacity of a channel A to simulate another channel
A’ in the presence of free shared randomness is given by:

[6] Bennett et al., IEEE Trans. Inf. Theory 48(10):2637, 2002



Quantum Shannon Theorem
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Using entanglement, at what asymptotic rate can Alice transmit classical
information?



Quantum Shannon Theorem

Alice Bob

: £: quantum channel
‘é entanglement id: perfect classical channel

: x .
m!
* .w

Using entanglement, at what asymptotic rate can Alice transmit classical
information?
= Asymptotic entanglement-assisted classical capacity [6]:

Cg = mgX(H(P) +H(E(p)) — H((€ ®id)®,))
H(p) = —tr(plog p)

[6] Bennett et al., IEEE Trans. Inf. Theory 48(10):2637, 2002
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= Cyas well!
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Using entanglement, at what asymptotic rate can the classical id-channel simulate a quantum
channel?

= C;as well! L.e. the asymptotic capacity of a quantum channel to simulate another

quantum channel in the presence of free entanglement is given by:




Quantum Reverse Shannon
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Using entanglement, at what asymptotic rate can the classical id-channel simulate a quantum
channel?

= C;as well! L.e. the asymptotic capacity of a quantum channel to simulate another

quantum channel in the presence of free entanglement is given by:

' Note: Maximally entangled states are
| not sufficient, embezzling states needed!




Embezzling States

* Introduced by Van Dam and Hayden [7]
* Definition: A pure, bipartite state of the form

! Sy
| |u(k))as = G(k)z\fj

where G(k) = Z 1., is called embezzling state of index k.

J
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[7] Phys. Rev. A, Rapid Comm. 67:060302(R), 2003



Embezzling States

* Introduced by Van Dam and Hayden [7]

k v AT
1 ) L] V - , -
where G(k) = —, is called embezzling state of in
'] g

Q. |
m}
X |
= |

j=1
* Proposition: Let € > 0 and let |©) ABbe a pure bipartite state of Schmidt rank m. Then
the transformation

(k) aB — |1(k))aB @ |p) aB

can be accomplished with fidelity better than (1 — ¢)for k > m/€with local isometries
at A and B.
* Definition: The fidelity between two density matrices ¢ and o is defined as

F(p,0) = (tx(y/\/poy/p))?

and it is a notion of distance on the set of density matrices.

[7] Phys. Rev. A, Rapid Comm. 67:060302(R), 2003



Our Proof

#* £a,p CPTP map to simulate, £4,5: S(Ha) — S(Hp) Alice Bob

par—Eap(pa) —
* Stinespring Dilation:

Easp(pa) =tra(UaspapaUa_par) =:tra(opar)

for some isometry Uy _,ga : Ha — Hp @ Har, with
dim(H ) < dim(Ha) - dim(Hpg) .

* Key Idea:
(i) Local simulation of £4_, gat Alice’s side using Stinespring Dilation
= opa at Alice’s side.
(ii) Send part B of o 5.4-to Bob with classical channel and entanglement
= Bobhasog = &4 _.5(pa)!
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* How much of a given resource is needed to do this?
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* Qur case: 0pa’ — 0pa'r = |V) (1| Ba’ R purification, free entanglement, classical
communication to quantity.
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state merging

R: reference system

oo : entanglement

state splitting

Alice Bob

* How much of a given resource is needed to do this?

* Qur case: 0pa’ — 0pa'r = |V) (1| Ba’ R purification, free entanglement, classical
communication to quantity.

+ Horodecki et al. [2], [#®™) B a'r with classical communication cost ¢, :

= lcn = H(opg)+ H(or) — H(opr) =I(B: R),

n—oo N,

[2] Nature 436:673-676, 2005



Quantum State Merging/State
Sphitting

state merging R

R: reference system

|¢> BA'R oo : entanglement

state splitting

e B
Alice Bob

How much of a given resource is needed to do this?

Our case: opar — 0pa'r = |¥)(V¥|B A’ R purification, free entanglement, classical
communication to quantity.

Horodecki et al. [2], [#®™) g a'r with classical communication cost ¢,, :

= lcn = H(opg)+ H(or) — H(opr) =I(B: R),

n—oo M
One-shot version, [¢) a'r with classical communication cost ¢, for an error €:
'&ce =

max




Back to the Proof

£ CPTD map gA—>B( A) = Wy (UX%BA’pZUK—HBA’) =:tra (O%A’) to Simlﬂate'

* Local simulation of U} JA-pa and state splitting of o 4/ gives
g-approximation F ', 5 of £5" 5 for a class. comm. cost If,,.(B : R)yn



Back to the Proof

£ CPTD map gA—>B( A) = Wy (UX%BA’pZUK—HBA’) =:tra (O%A’) to Simlﬂate'

* Local simulation of U} JA-pa and state splitting of o 4/ gives
g-approximation F ', 5 of £5" 5 for a class. comm. cost If,,.(B : R)yn

* Definition: Let £ be a quantum operation. The diamond norm [8] of £ is
s I€llo = sup sup (€ @ idi)(o)

keN ||lo]l1 <1
lofl = tr(VoTo).

The induced metric is a notion of distance for quantum operations.

[8] Kitaev, Russian Math. Surveys 52:1191, 1997



Back to the Proof

* CPTP map £3" 5(ph) = trar (Ui parPaUA_ par) =: tra (0 4/) to simulate.

* Local simulation of U}_, 5 4- and state splitting of o4, gives

e-approximation F, 5 of 5§’Z g for a class. comm. cost I, (B : R)on .

* Definition: Let £ be a quantum operation. The diamond norm [8] of £ is

defined as Hg”<> = sup sup ||(5 &) ldk)(O')H1
kEeN ||lo]|[1 <1

lofly = tr(vVioTo).

The induced metric is a notion of distance for quantum operations.
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* Toshow: lim lim [|E4% 5 —Fy" pllo =0, lim lim —I,.(B: R
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[8] Kitaev, Russian Math. Surveys 52:1191, 1997



The Post-Selection Technique

* Christandl et al. [4]: Let £4~and Fa» be quantum operations that act
permutatlon—covarlant on a n- partlte System Han = HE™. Then

HgAn - fAnHo < p01Y( MI((Ean — J:An

where (4 r» r/is a purification of the (de Finetti type) state
CAnRn = /W%]%d(WAR)

with war a pure state onHa ® Hr,Hr = Ha, Hr» = HE" and d(.) the
measure on the normalized pure states onH 4 ® Hrinduced by the
Haar measure on the unitary group acting on 4 ® Hr, normalized to

) -1

[4] Phys. Rev. Lett. 102:020504, 2009



The Post-Selection Technique
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[4] Phys. Rev. Lett. 102:020504, 2009

Christandl et al. [4]: Let £4»and Fa» be quantum operations that act
permutatlon-covarlant on a n-partite system Han = ”Hff{” Then

e

where (4 r» r/is a purification of the (de Finetti type) state
CAnRn = / wSrd(waRr)

with war a pure state onHa ® Hr,Hr = Ha, Hr» = HE" and d(.) the
measure on the normalized pure states onH 4 ® Hrinduced by the
Haar measure on the unitary group acting on 4 ® Hr, normalized to

) -1

Permutation covariant:




(onclusions

Alice Bob
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id: perfect classical channel
£: quantum channel

‘l and an amount of classical communication equal to the channel’s entanglement assisted

|
Lc:lassu:al capacity.
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+ Stinespring Dilation: 8A_>B(,0A) = tEatU A 5 ar D AU = b e=s LA G i)

.

* Local simulation of UX_> 54 and (optimal) one-shot State Splitting of 0 5 4/gives
g-approximation F ), 5 of £ . Using Post-Selection Technique everything works!



