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Goal: understand similarities and differences



Motivation: Bits vs. Qubits |

 Computational complexity: Shor’s prime factorisation algorithm, Grover’s
search algorithm, simulation of quantum systems etc.



Motivation: Bits vs. Qubits |

 Computational complexity: Shor’s prime factorisation algorithm, Grover’s
search algorithm, simulation of quantum systems etc.

-> No classical/quantum super polynomial separation is proven (!)



Motivation: Bits vs. Qubits |

 Computational complexity: Shor’s prime factorisation algorithm, Grover’s
search algorithm, simulation of quantum systems etc.

-> No classical/quantum super polynomial separation is proven (!)

« Communication complexity: how much communication is needed to
compute a given function with bipartite input?




Motivation: Bits vs. Qubits |

Computational complexity: Shor’s prime factorisation algorithm, Grover’s
search algorithm, simulation of quantum systems etc.

-> No classical/quantum super polynomial separation is proven (!)

Communication complexity: how much communication is needed to
compute a given function with bipartite input?

-> exponential classical/quantum separation is known (!)
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-> unbounded classical/quantum separation is known

Cryptography: key distribution, two-party

cryptography, etc.

-> strong classical/quant

um separation is known

-> put also: quantum adversaries, post-qguantum

cryptography!
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 Goal: transform only partly random classical source N into (almost perfectly)
uniformly random source M (possibly over shorter alphabet)

Alice Alice
N V]
(2" =M C N =2")

« Condition: contains some randomness as measured by

pguess(N)P — maxp, < 1/]€

 Problem: cannot be achieved in a deterministic way, if we require it to work for
all sources satistying the upper bound on the guessing probability

« Solution: can be achieved if the use of a catalyst is allowed, additional
uniformly random source over alphabet D = 2¢ (called the seed)
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Goal: transform only partly random classical source N into (almost perfectly)
uniformly random and private source M (possibly over shorter alphabet)

Correlations: if E is classical then the extractor still works but what happens
for E quantum?

Motivation: quantum cryptography, post-quantum cryptography, information
theory —> compare classical to guantum memory

Setup: input is classical-quantum state with lower bound on the adversary’s
guessing probability of the secret N (given all her knowledge)

one =3 D@lN@0h  pres(NIE), = max S tr[ALp5] < 1/k
xeN A=A }iEEN
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C(Ext, k) vs. Q(Ext,k)

e Motivation: quantum cryptography, post-quantum cryptography, information
theory —> compare classical to qguantum memory

« Known: some extractor constructions are quantum-proof, some are not —>
there is a classical - quantum gap (only understood very poorly)

 Goal: understand this gap better, find (matching) upper and lower bounds on
the size of the gap

Our work: we developed mathematical framework to study this question
based on operator space theory (ct. Bell inequalities)

Results: derive all known result with unified proof strategy (using semi-
definite program relaxations), plus give new bounds on the classical -
quantum gap

Extra: relate the question about the violation of Bell inequalities to the
guestion about quantum-proof extractors
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Overview

C(Ext, k) vs. Q(Ext,k)

Classical extractor property is expressed as norm of a linear mapping
between normed linear spaces

These normed spaces can be quantised, giving rise to operator spaces

The property quantum-proof extractor can be formulated in terms of a
completely bounded norm (norms between operator spaces)
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e Consider the norm: || - [|[n = max {|| - ||1, k|| - ||oo }

—> input constraint captured for distributions with || P||n <1

(C(Ext, k — Ext(i, P) — U <
(remember: C(Ext, k) = . I(Ijl\fa};<1/k ZH xt (1, Ml <€)

RPM -

e Extractor characterised by linear mapping A[Ext] : RY —

1 1
A[EXt](em) — 5 Z <5Ext(i,aﬁ):y — M) e; & Cy
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Operator Spaces

* Linear normed space W together with a sequence of normson W @ M,, ¢ € N

satisfying some consistency conditions
classical guantum

« AmappinglL : W — V between operator spaces W and V has completely

bounded norm (cb): L] = sup {||L @ idar, || wenrr, s venr, }

qeN

* There exist operator space extensions such that:

Q(Ext, k) = | A[Ext][[ gy <€

 Analyse bounded vs. completely bounded norm: in general, but also for
specific extractor constructions!

C(Bxt,k) vs. Q(Ext,k) & [AExt L, vs [AExt]on:
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Analyse differences (similarities) between classical and quantum information

Randomness extraction against classical vs. quantum adversaries:

Eve o ....4 Alice Alice o v/ .o EVE
E N M E
C(Ext, k) vs. Q(Ext,k) Main question
remains largely
| open!
We phrase the problem in terms of operator space theory:
C(Ext, k) vs. Q(Ext,k) < |[A[Ext]||,; vs. [AEt]| s

We derive all known result with a unified proof strategy (using semi-definite
program relaxations), plus give new bounds on the classical - quantum gap

Connection to Bell inequalities, extension to theory of pseudorandomness, etc.



