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« Given fixed N®" and € > 0, what is the highest possible rate R ?

Rpr(n;e) = max{R : (R,n,¢) is achievable on N}
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« Ez:p— (1 —0)p+ Ble)(e| with 8 € [0,1] and |e)(e| orthogonal
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Dy:p— (1 —a)p+ S(X,oX—I—YpY—I—ZpZ) with a € [0, 1] and
0 1 0 — 1 0
—> but Q(D,) =7 X = (1 o) Y= (z 0) 4= (0 —1)

Only lower and upper bounds on the quantum capacity, super-additivity of
coherent information:

1 —h(a) —alogd =1.(D,) < Q(D )<min{l1—h(oz)l,1—4oz}
l:Q(Zocl)

(slightly better upper bounds known)

How many qubits do we need to coherently manipulate to witness super-additivity?

We show finite resources converse bound: ng (n;e) < f{Z (n;€)

(where Z,, is the qubit dephasing channel)
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