Classical and Quantum Channel Simulations

Mario Berta (based on joint work with Fernando Brandão, Matthias Christandl, Renato Renner, Joseph Renes, Stephanie Wehner, Mark Wilde)

Classical Shannon Theory

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

Classical Shannon Theory

- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- * Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- * Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

* Independent and identical distribution (IID) + interested in asymptotic rates.

- * Independent and identical distribution (IID) + interested in asymptotic rates.
- * At what rate can a channel Λ simulate the identity channel?

Transmitter Alice

Receiver Bob

 Λ : channel

- * Independent and identical distribution (IID) + interested in asymptotic rates.
- * At what rate can a channel Λ simulate the identity channel?

- * Independent and identical distribution (IID) + interested in asymptotic rates.
- * At what rate can a channel Λ simulate the identity channel?

Shannon's noisy channel coding theorem, channel capacity [1]:

$$C(\Lambda) = \max_{X} I(X : \Lambda(X)) \quad I(X : Y) = H(X) + H(Y) - H(XY) \quad H(X) = -\sum_{X} p_X \log p_X$$

- * Independent and identical distribution (IID) + interested in asymptotic rates.
- * At what rate can a channel Λ simulate the identity channel?

Shannon's noisy channel coding theorem, channel capacity [1]:

$$C(\Lambda) = \max_{X} I(X : \Lambda(X)) \quad I(X : Y) = H(X) + H(Y) - H(XY) \quad H(X) = -\sum_{X} p_X \log p_X$$

Neither back communication nor shared randomness help.
[1] Shannon, Bst J 27:379,623, 1948

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- * Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- * Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

Classical Channel Simulations

* At what rate can the identity channel simulate a channel Λ (using shared randomness)?

Classical Channel Simulations

* At what rate can the identity channel simulate a channel Λ (using shared randomness)?

* Classical reverse Shannon theorem, channel simulation is possible if and only if [2,3]:

$$c \ge \max_X I(X : \Lambda(X)) \quad c + r \ge \max_X H(\Lambda(X))$$

$$C_{CRST}(\Lambda) = \max_{X} I(X : \Lambda(X)) = C(\Lambda)$$

[2] Bennett et al., IEEE TIF 48(10):2637, 2002

[3] Bennett et al., arXiv:0912.5537v2

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- * Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

* Independent and identical distribution (IID) + interested in asymptotic rates.

- * Independent and identical distribution (IID) + interested in asymptotic rates.
- At what rate can a channel simulate the identity channel (using additional resources)?
 Alice
 Bob

*e.g. entanglement, classic communication (forward, backward, two-way)

- * Independent and identical distribution (IID) + interested in asymptotic rates.
- At what rate can a channel simulate the identity channel (using additional resources)?
 Alice
 Bob

*e.g. entanglement, classic communication (forward, backward, two-way)

* Quantum Channel Capacities [...]: $Q, Q_E, Q_{\rightarrow}, Q_{\leftarrow}, Q_{\leftrightarrow}$

- * Independent and identical distribution (IID) + interested in asymptotic rates.
- At what rate can a channel simulate the identity channel (using additional resources)? Alice

*e.g. entanglement, classic communication (forward, backward, two-way)

- * Quantum Channel Capacities [...]: $Q, Q_E, Q_{\rightarrow}, Q_{\leftarrow}, Q_{\leftrightarrow}$
- * Entanglement-assisted quantum capacity [2]: $I(A:B)_{\rho} = H(A)_{\rho} + H(B)_{\rho} - H(AB)_{\rho}$ $H(A)_{\rho} = -\text{tr}[\rho_A \log \rho_A]$

$$Q_E(\mathcal{E}) = \frac{1}{2} \cdot \max_{\rho} I(B:R)_{(\mathcal{E} \otimes \mathrm{id})(\Phi_{\rho})}$$

[2] Bennett et al., IEEE TIF 48(10):2637, 2002

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- * Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

Quantum Reverse Shannon Theorem

Using entanglement, at what rate can the quantum identity channel simulate a quantum channel?

Quantum Reverse Shannon Theorem

 Using entanglement, at what rate can the quantum identity channel simulate a quantum channel?

* Quantum reverse Shannon theorem, channel simulation is possible for [3,4]: $q = \frac{1}{2} \cdot \max_{\rho} I(B:R)_{(\mathcal{E} \otimes \mathrm{id})(\Phi_{\rho})} \quad e = \infty \quad \text{(embezzling states)}$

[3] Bennett et al., arXiv:0912.5537v2

[4] Berta et al., CMP 306(3):579, 2011

Quantum Reverse Shannon Theorem

Using entanglement, at what rate can the quantum identity channel simulate a quantum channel?

* Quantum reverse Shannon theorem, channel simulation is possible for [3,4]: $q = \frac{1}{2} \cdot \max_{\rho} I(B:R)_{(\mathcal{E} \otimes \mathrm{id})(\Phi_{\rho})} \quad e = \infty \quad (\text{embezzling states})$ $Q_{QRST}(\mathcal{E}) = \frac{1}{2} \cdot \max_{\rho} I(B:R)_{(\mathcal{E} \otimes \mathrm{id})(\Phi_{\rho})} = Q_E(\mathcal{E})$

Communication optimal, for more communication other tradeoffs are possible [3].
 [3] Bennett et al., arXiv:0912.5537v2
 [4] Berta et al., CMP 306(3):579, 2011

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- * Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

Information Gain of Quantum Measurements

* At what rate can the classical identity channel simulate a quantum measurement (using shared randomness)?

Information Gain of Quantum Measurements

* At what rate can the classical identity channel simulate a quantum measurement (using shared randomness)?

 Measurement simulation is possible if and only if (universal measurement compression) [5]:

$$c \ge \max_{\rho} I(X_B : R)_{(\mathcal{M} \otimes \mathrm{id})(\Phi_{\rho})} \quad c + r \ge \max_{\rho} H(X_B)_{\mathcal{M}(\rho)}$$

[5] Berta et al., arXiv:1301.1594V1

Information Gain of Quantum Measurements

* At what rate can the classical identity channel simulate a quantum measurement (using shared randomness)?

 Measurement simulation is possible if and only if (universal measurement compression) [5]:

$$c \ge \max_{\rho} I(X_B : R)_{(\mathcal{M} \otimes \mathrm{id})(\Phi_{\rho})} \quad c + r \ge \max_{\rho} H(X_B)_{\mathcal{M}(\rho)}$$
$$C_{IG}(\mathcal{M}) = \max_{\rho} I(X_B : R)_{(\mathcal{M} \otimes \mathrm{id})(\Phi_{\rho})} \quad (= C_E(\mathcal{M}))$$

* Following Winter [6]: $C_{IG}(\mathcal{M})$ is the information gained by the measurement!

[6] Winter, CMP 244(1):157, 2004

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- * Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

Entanglement Cost of Quantum Channels

 Using classical communication, at what rate can the quantum identity channel simulate a quantum channel?

Entanglement Cost of Quantum Channels

 Using classical communication, at what rate can the quantum identity channel simulate a quantum channel?

* Quantum communication equivalent to ebits, channel simulation possible for [7]:

$$q = e = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^n} E_F((\mathcal{E}^{\otimes n} \otimes \mathcal{I})(\Phi_{\rho^n})) E_F(\rho_{AB}) = \inf_{\{p_i, \rho^i\}} \sum_i p_i H(A)_{\rho^i} \ \rho_{AB} = \sum_i p_i \rho_{AB}^i$$
$$c = \infty \quad \text{(unknown)}$$

[7] Berta et al., IEEE ISIT Proc. p. 900, 2012

Entanglement Cost of Quantum Channels

Using classical communication, at what rate can the quantum identity channel simulate a quantum channel?

* Quantum communication equivalent to ebits, channel simulation possible for [7]: $q = e = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^n} E_F((\mathcal{E}^{\otimes n} \otimes \mathcal{I})(\Phi_{\rho^n})) E_F(\rho_{AB}) = \inf_{\{p_i, \rho^i\}} \sum_i p_i H(A)_{\rho^i} \ \rho_{AB} = \sum_i p_i \rho_{AB}^i$ $c = \infty \quad \text{(unknown)} \qquad \qquad E_C(\mathcal{E}) = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^n} E_F((\mathcal{E}^{\otimes n} \otimes \mathcal{I})(\Phi_{\rho^n})) \quad (\geq Q_{\leftrightarrow}(\mathcal{E}))$

Entanglement cost optimal, for less communication other tradeoffs are possible [3].
 [7] Berta et al., IEEE ISIT Proc. p. 900, 2012
 [3] Bennett et al., arXiv:0912.5537v2

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- * Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

* $\mathcal{E}_{A \to B}^{\otimes n}$: to simulate $\mathcal{F}_{A \to B}^{n,\varepsilon}$: channel simulation with cost $x^{(1)}(\mathcal{F}_{A \to B}^{n,\varepsilon})$

- * $\mathcal{E}_{A \to B}^{\otimes n}$: to simulate $\mathcal{F}_{A \to B}^{n,\varepsilon}$: channel simulation with cost $x^{(1)}(\mathcal{F}_{A \to B}^{n,\varepsilon})$
- * Channel Simulation has to work for all (entangled) inputs!

- * $\mathcal{E}_{A \to B}^{\otimes n}$: to simulate $\mathcal{F}_{A \to B}^{n,\varepsilon}$: channel simulation with cost $x^{(1)}(\mathcal{F}_{A \to B}^{n,\varepsilon})$
- Channel Simulation has to work for all (entangled) inputs!
- * The diamond norm of a quantum operation is defined as $\|\mathcal{E}\|_{\diamondsuit} = \sup_{k \in \mathbb{N}} \sup_{\|\sigma\|_1 \leq 1} \|(\mathcal{E} \otimes \mathrm{id}_k)(\sigma)\|_1 \quad \|\sigma\|_1 = \mathrm{tr}(\sqrt{\sigma^{\dagger}\sigma})$

* $\mathcal{E}_{A \to B}^{\otimes n}$: to simulate $\mathcal{F}_{A \to B}^{n,\varepsilon}$: channel simulation with cost $x^{(1)}(\mathcal{F}_{A \to B}^{n,\varepsilon})$

Alice

10

Bob

- Channel Simulation has to work for all (entangled) inputs!
- * The diamond norm of a quantum operation is defined as $\|\mathcal{E}\|_{\diamondsuit} = \sup_{k \in \mathbb{N}} \sup_{\|\sigma\|_1 \leq 1} \|(\mathcal{E} \otimes \mathrm{id}_k)(\sigma)\|_1 \quad \|\sigma\|_1 = \mathrm{tr}(\sqrt{\sigma^{\dagger}\sigma})$

* We need:
$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \|\mathcal{E}_{A \to B}^{\otimes n} - \mathcal{F}_{A \to B}^{n,\epsilon}\|_{\Diamond} = 0 \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} x^{(1)} (\mathcal{F}_{A \to B}^{n,\epsilon}) = X(\mathcal{E})$$

- * $\mathcal{E}_{A \to B}^{\otimes n}$: to simulate $\mathcal{F}_{A \to B}^{n,\varepsilon}$: channel simulation with cost $x^{(1)}(\mathcal{F}_{A \to B}^{n,\varepsilon})$
- Channel Simulation has to work for all (entangled) inputs!
- * The diamond norm of a quantum operation is defined as $\|\mathcal{E}\|_{\Diamond} = \sup_{k \in \mathbb{N}} \sup_{\|\sigma\|_1 \leq 1} \|(\mathcal{E} \otimes \mathrm{id}_k)(\sigma)\|_1 \quad \|\sigma\|_1 = \mathrm{tr}(\sqrt{\sigma^{\dagger}\sigma})$
- * We need: $\lim_{\epsilon \to 0} \lim_{n \to \infty} \|\mathcal{E}_{A \to B}^{\otimes n} \mathcal{F}_{A \to B}^{n,\epsilon}\|_{\Diamond} = 0 \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} x^{(1)} (\mathcal{F}_{A \to B}^{n,\epsilon}) = X(\mathcal{E})$
- Post-selection technique for quantum channels [8]:

$$\|\mathcal{E}^{\otimes n} - \mathcal{F}^{n,\varepsilon}\|_{\diamond} \le \operatorname{poly}(n) \cdot \|((\mathcal{E}^{\otimes n} - \mathcal{F}^{n,\varepsilon}) \otimes \operatorname{id})(\zeta^n)\|_1$$

 ζ^n is the purification of a special de Finetti state (a state which consists of n identical and independent copies of a state on a single subsystem). No IID structure!

Alice

Bob

- * $\mathcal{E}_{A \to B}^{\otimes n}$: to simulate $\mathcal{F}_{A \to B}^{n,\varepsilon}$: channel simulation with cost $x^{(1)}(\mathcal{F}_{A \to B}^{n,\varepsilon})$
- Channel Simulation has to work for all (entangled) inputs!
- * The diamond norm of a quantum operation is defined as $\|\mathcal{E}\|_{\diamondsuit} = \sup_{k \in \mathbb{N}} \sup_{\|\sigma\|_1 \leq 1} \|(\mathcal{E} \otimes \mathrm{id}_k)(\sigma)\|_1 \quad \|\sigma\|_1 = \mathrm{tr}(\sqrt{\sigma^{\dagger}\sigma})$
- * We need: $\lim_{\epsilon \to 0} \lim_{n \to \infty} \|\mathcal{E}_{A \to B}^{\otimes n} \mathcal{F}_{A \to B}^{n,\epsilon}\|_{\Diamond} = 0 \lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} x^{(1)} (\mathcal{F}_{A \to B}^{n,\epsilon}) = X(\mathcal{E})$
- Post-selection technique for quantum channels [5]:

$$\|\mathcal{E}^{\otimes n} - \mathcal{F}^{n,\varepsilon}\|_{\Diamond} \leq \operatorname{poly}(n) \cdot \|((\mathcal{E}^{\otimes n} - \mathcal{F}^{n,\varepsilon}) \otimes \operatorname{id})(\zeta^{n})\|_{1}$$

 ζ^n is the purification of a special de Finetti state (a state which consists of n identical and independent copies of a state on a single subsystem). No IID structure!

Alice

Bob

* Basic idea: create $\sigma^n = \mathcal{E}^{\otimes n}(\zeta^n)$ locally at Alice's side, send it over to Bob's side. This defines the channel simulation $\mathcal{F}^{n,\varepsilon}$!

[8] Christandl et al., PRL 102(2):020504, 2009

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- * Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

Proof Idea: Randomness Extractors with Side Information

State transfer from Alice to Bob: $\sigma^n = \mathcal{E}^{\otimes n}(\zeta^n)$

Use random coding schemes and analyze how well they perform in the one-shot regime --> randomness extractors, also called decoupling (cf. Renner's and Dupuis' talk)!

Proof Idea: Randomness Extractors with Side Information

* State transfer from Alice to Bob: $\sigma^n = \mathcal{E}^{\otimes n}(\zeta^n)$

Use random coding schemes and analyze how well they perform in the one-shot regime --> randomness extractors, also called decoupling (cf. Renner's and Dupuis' talk)!

One-shot information theory, smooth entropy formalism [9,10].

Proof Idea: Randomness Extractors with Side Information

• State transfer from Alice to Bob: $\sigma^n = \mathcal{E}^{\otimes n}(\zeta^n)$

Use random coding schemes and analyze how well they perform in the one-shot regime --> randomness extractors, also called decoupling (cf. Renner's and Dupuis' talk)!

- * One-shot information theory, smooth entropy formalism [9,10].
- Technically:
 - Classical reverse Shannon theorem: classical randomness extractor with classical side information (e.g. random permutation).
 - Information gain of quantum measurements: classical **randomness extractor** with quantum side information (e.g. random permutation).
 - Entanglement cost of quantum channels: quantum randomness extractor (e.g. random unitary).
 - Quantum reverse Shannon theorem: quantum randomness extractor with quantum side information (e.g. random unitary).

- Classical Shannon Theory
- Classical Channel Simulations:
 - Classical Reverse Shannon Theorem
- Quantum Shannon Theory
- * Quantum Channel Simulations:
 - Quantum Reverse Shannon Theorem
 - Information Gain of Quantum Measurements
 - Entanglement Cost of Quantum Channels
- * Proof Idea:
 - Post-Selection Technique for (Quantum) Channels
 - Randomness Extractors with (Quantum) Side Information
- Extensions and Applications

* Results: $C_{CRST}(\Lambda) = \max_{X} I(X : \Lambda(X))$ classical reverse Shannon $C_{IG}(\mathcal{M}) = \max_{\rho} I(X_B : R)_{(\mathcal{M} \otimes \mathrm{id})(\Phi_{\rho})}$ information gain of measurements $Q_{QRST}(\mathcal{E}) = \frac{1}{2} \cdot \max_{\rho} I(B : R)_{(\mathcal{E} \otimes \mathrm{id})(\Phi_{\rho})}$ quantum reverse Shannon $E_C(\mathcal{E}) = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^n} E_F((\mathcal{E}^{\otimes n} \otimes \mathcal{I})(\Phi_{\rho^n}))$ entanglement cost

* Results:
$$C_{CRST}(\Lambda) = \max_{X} I(X : \Lambda(X))$$
 classical reverse Shannon
 $C_{IG}(\mathcal{M}) = \max_{\rho} I(X_B : R)_{(\mathcal{M} \otimes \mathrm{id})(\Phi_{\rho})}$ information gain of measurements
 $Q_{QRST}(\mathcal{E}) = \frac{1}{2} \cdot \max_{\rho} I(B : R)_{(\mathcal{E} \otimes \mathrm{id})(\Phi_{\rho})}$ quantum reverse Shannon
 $E_C(\mathcal{E}) = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^n} E_F((\mathcal{E}^{\otimes n} \otimes \mathcal{I})(\Phi_{\rho^n}))$ entanglement cost

- * Other tradeoffs are possible [3].
- * Feedback vs. non-feedback simulations (classical and quantum) [3,5].

* Results:
$$C_{CRST}(\Lambda) = \max_{X} I(X : \Lambda(X))$$
 classical reverse Shannon
 $C_{IG}(\mathcal{M}) = \max_{\rho} I(X_B : R)_{(\mathcal{M} \otimes \mathrm{id})(\Phi_{\rho})}$ information gain of measurements
 $Q_{QRST}(\mathcal{E}) = \frac{1}{2} \cdot \max_{\rho} I(B : R)_{(\mathcal{E} \otimes \mathrm{id})(\Phi_{\rho})}$ quantum reverse Shannon
 $E_C(\mathcal{E}) = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^n} E_F((\mathcal{E}^{\otimes n} \otimes \mathcal{I})(\Phi_{\rho^n}))$ entanglement cost

- * Other tradeoffs are possible [3].
- * Feedback vs. non-feedback simulations (classical and quantum) [3,5].
- * Purely information theoretic interest: classification of channels.
- Determine upper bounds on strong converse capacities (applications in quantum cryptography), cf. misc. talks at this workshop.
- * Quantum rate distortion theory (lossy data compression), cf. Wilde's talk Friday 14:30.

* Results:
$$C_{CRST}(\Lambda) = \max_{X} I(X : \Lambda(X))$$
 classical reverse Shannon
 $C_{IG}(\mathcal{M}) = \max_{\rho} I(X_B : R)_{(\mathcal{M} \otimes \mathrm{id})(\Phi_{\rho})}$ information gain of measurements
 $Q_{QRST}(\mathcal{E}) = \frac{1}{2} \cdot \max_{\rho} I(B : R)_{(\mathcal{E} \otimes \mathrm{id})(\Phi_{\rho})}$ quantum reverse Shannon
 $E_C(\mathcal{E}) = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^n} E_F((\mathcal{E}^{\otimes n} \otimes \mathcal{I})(\Phi_{\rho^n}))$ entanglement cost

- * Other tradeoffs are possible [3].
- * Feedback vs. non-feedback simulations (classical and quantum) [3,5].
- * Purely information theoretic interest: classification of channels.
- Determine upper bounds on strong converse capacities (applications in quantum cryptography), cf. misc. talks at this workshop.
- * Quantum rate distortion theory (lossy data compression), cf. Wilde's talk Friday 14:30.
- That's it...
- [3] Bennett et al., arXiv:0912.5537v2

[5] Berta et al., arXiv:1301.1594v1

Example for Classification of Channels

Capacity of a classical channel Λ to simulate another classical channel Λ' in the presence of free shared randomness is given by:

$$C_R(\Lambda, \Lambda') = \frac{C(\Lambda)}{C(\Lambda')}$$

Capacity of a quantum channel to simulate another quantum channel in the presence of free entanglement is given by:

$$C_E(\mathcal{E},\mathcal{F}) = \frac{C_E(\mathcal{E})}{C_E(\mathcal{F})}$$

Example of Embezzling States

- * Introduced by Van Dam and Hayden [11]
- Definition: A pure, bipartite state of the form

$$\mu(k)\rangle_{AB} = \frac{1}{\sqrt{G(k)}} \sum_{j=1}^{k} \frac{1}{\sqrt{j}} |jj\rangle_{AB}$$

where $G(k) = \sum_{j=1}^{k} \frac{1}{j}$, is called *embezzling state* of index *k*.

* **Proposition:** Let $\epsilon > 0$ and let $|\varphi\rangle_{AB}$ be a pure bipartite state of Schmidt rank *m*. Then the transformation

 $|\mu(k)\rangle_{AB} \mapsto |\mu(k)\rangle_{AB} \otimes |\varphi\rangle_{AB}$

can be accomplished with fidelity better than $(1 - \epsilon)$ for $k > m^{1/\epsilon}$ with local isometries at *A* and *B*.

* **Definition:** The *fidelity* between two density matrices ϱ and σ is defined as

$$F(\rho,\sigma) = (\operatorname{tr}(\sqrt{\sqrt{\rho}\sigma}\sqrt{\rho}))^2$$

and it is a notion of distance on the set of density matrices.

[11] Pra, Rc 67:060302(R), 2003

Example: Quantum State Merging/State Splitting

- * How much of a given resource is needed to do this?
- * Our case: $\sigma_{BA'} \rightarrow \sigma_{BA'R} = |\psi\rangle \langle \psi|_{BA'R}$ purification, free entanglement, classical communication to quantify.
- * Horodecki et al. [12], $|\psi^{\otimes n}\rangle_{BA'R}$ with classical communication cost c_n :

$$c = \lim_{n \to \infty} \frac{1}{n} c_n = H(\sigma_B) + H(\sigma_R) - H(\sigma_{BR}) = I(B:R)_{\sigma}$$

* One-shot version, $|\psi\rangle_{BA'R}$ with classical communication cost c_{ϵ} for an error ϵ [4]:

 $c_{\epsilon} \cong I^{\epsilon}_{\max}(B:R)_{\sigma}$

[12] Nature 436:673-676, 2005

[4] Berta et al., CMP 306(3):579, 2011

Details: The Post-Selection Technique

* Christandl et al. [8]: Let \mathcal{E}_{A^n} and \mathcal{F}_{A^n} be quantum operations that act permutation-covariant on a *n*-partite system $\mathcal{H}_{A^n} = \mathcal{H}_A^{\otimes n}$. Then

 $\|\mathcal{E}_{A^n} - \mathcal{F}_{A^n}\|_{\diamond} \leq \operatorname{poly}(n)\|((\mathcal{E}_{A^n} - \mathcal{F}_{A^n}) \otimes \operatorname{id}_{R^n R'})(\zeta_{A^n R^n R'})\|_1$

where $\zeta_{A^n R^n R'}$ is a purification of the (de Finetti type) state

 $\zeta_{A^n R^n} = \int \omega_{AR}^{\otimes n} d(\omega_{AR})$

with ω_{AR} a pure state on $\mathcal{H}_A \otimes \mathcal{H}_R$, $\mathcal{H}_R \cong \mathcal{H}_A$, $\mathcal{H}_{R^n} = \mathcal{H}_R^{\otimes n}$ and d(.) the measure on the normalized pure states on $\mathcal{H}_A \otimes \mathcal{H}_R$ induced by the Haar measure on the unitary group acting on $\mathcal{H}_A \otimes \mathcal{H}_R$, normalized to $\int d(.) = 1$