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✤ Independent and identical distribution (IID) + interested in asymptotic rates.
✤ At what rate can a channel Λ simulate the identity channel?

✤ Shannon’s noisy channel coding theorem, channel capacity [1]:

✤ Neither back communication nor shared randomness help.
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[2] Bennett et al., IEEE TIF 48(10):2637, 2002

shared randomness

✤ Classical reverse Shannon theorem, channel simulation is possible if and only if [2,3]:

✤ At what rate can the identity channel simulate a channel Λ (using shared randomness)?

c � max

X
I(X : ⇤(X))

c+ r � max

X
H(⇤(X))

CCRST (⇤) = max

X
I(X : ⇤(X)) = C(⇤)

[3] Bennett et al., arXiv:0912.5537v2
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additional resources*

E
E

✤ Independent and identical distribution (IID) + interested in asymptotic rates.
✤ At what rate can a channel simulate the identity channel (using additional resources)?

*e.g. entanglement, classic communication (forward, backward, two-way)

Q,QE , Q!, Q , Q$✤ Quantum Channel Capacities [...]:
✤ Entanglement-assisted quantum capacity [2]:

QE(E) =
1

2

·max

⇢
I(B : R)(E⌦id)(�⇢)I(A : B)⇢ = H(A)⇢ +H(B)⇢ �H(AB)⇢

H(A)⇢ = �tr[⇢A log ⇢A]
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✤ Using entanglement, at what rate can the quantum identity channel simulate a 
quantum channel?

✤ Quantum reverse Shannon theorem, channel simulation is possible for [3,4]:
q =

1

2

·max

⇢
I(B : R)(E⌦id)(�⇢) e = 1 (embezzling states)

✤ Communication optimal, for more communication other tradeoffs are possible [3].

QQRST (E) =
1

2

·max

⇢
I(B : R)(E⌦id)(�⇢) = QE(E)

[3] Bennett et al., arXiv:0912.5537v2 [4] Berta et al., CMP 306(3):579, 2011



Outline

✤ Classical Shannon Theory

✤ Quantum Shannon Theory

✤ Classical Channel Simulations:
๏ Classical Reverse Shannon Theorem

✤ Quantum Channel Simulations:
๏ Quantum Reverse Shannon Theorem
๏ Information Gain of Quantum Measurements
๏ Entanglement Cost of Quantum Channels

✤ Extensions and Applications

✤ Proof Idea:
๏ Post-Selection Technique for (Quantum) Channels
๏ Randomness Extractors with (Quantum) Side Information



Information Gain of Quantum 
Measurements

Encoder

Alice Bob

id Decoder

shared randomness
id: classical identity channel
   : quantum measurement

✤ At what rate can the classical identity channel simulate a quantum measurement (using 
shared randomness)?

M

M



Information Gain of Quantum 
Measurements

✤ Measurement simulation is possible if and only if (universal measurement 
compression) [5]:

Encoder

Alice Bob

id Decoder

shared randomness
id: classical identity channel
   : quantum measurement

✤ At what rate can the classical identity channel simulate a quantum measurement (using 
shared randomness)?

M

M

c � max

⇢
I(XB : R)(M⌦id)(�⇢) c+ r � max

⇢
H(XB)M(⇢)

[5] Berta et al., arXiv:1301.1594V1

http://arxiv.org/abs/1301.1594


Information Gain of Quantum 
Measurements

✤ Measurement simulation is possible if and only if (universal measurement 
compression) [5]:

Encoder

Alice Bob

id Decoder

shared randomness
id: classical identity channel
   : quantum measurement

✤ At what rate can the classical identity channel simulate a quantum measurement (using 
shared randomness)?

M

M

c � max
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I(XB : R)(M⌦id)(�⇢) c+ r � max

⇢
H(XB)M(⇢)

CIG(M) = max

⇢
I(XB : R)(M⌦id)(�⇢) (= CE(M))

[5] Berta et al., arXiv:1301.1594V1 [6] Winter, CMP 244(1):157, 2004

✤ Following Winter [6]:                 is the information gained by the measurement!CIG(M)

http://arxiv.org/abs/1301.1594
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✤ Using classical communication, at what rate can the quantum identity channel simulate 
a quantum channel?

✤ Quantum communication equivalent to ebits, channel simulation possible for [7]:

(unknown)

✤ Entanglement cost optimal, for less communication other tradeoffs are possible [3].

q = e = lim

n!1

1

n
max

⇢n
EF ((E⌦n ⌦ I)(�⇢n

))

c = 1

[3] Bennett et al., arXiv:0912.5537v2[7] Berta et al., IEEE ISIT Proc. p. 900, 2012 
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EF ((E⌦n ⌦ I)(�⇢n

)) (� Q$(E))
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✤ Post-selection technique for quantum channels [5]:

kE⌦n � Fn,"k⌃  poly(n) · k((E⌦n � Fn,"
)⌦ id)(⇣n)k1

⇣n

✤ Basic idea: create                          locally at Alice’s side, send it over to Bob’s side. 
This defines the channel simulation         !

�n = E⌦n(⇣n)
Fn,"

[8] Christandl et al., PRL 102(2):020504, 2009
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Proof Idea: Randomness 
Extractors with Side Information

✤ One-shot information theory, smooth entropy formalism [9,10].

[9] Renner, PhD Thesis, ETHZ, 2005 [10] Tomamichel, PhD Thesis, ETHZ, 2011

✤ State transfer from Alice to Bob: 

✤ Technically:
๏ Classical reverse Shannon theorem: classical randomness extractor with classical 

side information (e.g. random permutation).
๏ Information gain of quantum measurements:  classical randomness extractor with 

quantum side information (e.g. random permutation).
๏ Entanglement cost of quantum channels: quantum randomness extractor (e.g. 

random unitary).
๏ Quantum reverse Shannon theorem: quantum randomness extractor with quantum 

side information (e.g. random unitary).

�n = E⌦n(⇣n)

Use random coding schemes and analyze how well they perform in the one-shot regime 
--> randomness extractors, also called decoupling (cf. Renner’s and Dupuis’ talk)!
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Extensions and Applications

✤ Feedback vs. non-feedback simulations (classical and quantum) [3,5].
✤ Other tradeoffs are possible [3].

[3] Bennett et al., arXiv:0912.5537v2 [5] Berta et al., arXiv:1301.1594v1
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cryptography), cf. misc. talks at this workshop.
✤ Quantum rate distortion theory (lossy data compression), cf. Wilde’s talk Friday 14:30.
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✤ Other tradeoffs are possible [3].
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Example for Classification of 
Channels

Capacity of a quantum channel to simulate another quantum channel in the presence of free 
entanglement is given by:

Alice Bob

CE(E ,F) =
CE(E)
CE(F)

E

F

Capacity of a classical channel Λ to simulate another classical channel Λ’ in the presence of 
free shared randomness is given by:

CR(⇤,⇤
0) =

C(⇤)

C(⇤0)

Alice Bob
Λ

Λ’



Example of Embezzling States

✤ Introduced by Van Dam and Hayden [11]
✤ Definition: A pure, bipartite state of the form

     

where                      , is called embezzling state of index k.

✤ Proposition: Let            and let            be a pure bipartite state of Schmidt rank m. Then 
the transformation

can be accomplished with fidelity better than            for                   with local isometries 
at A and B.

✤ Definition: The fidelity between two density matrices ρ and σ is defined as

and it is a notion of distance on the set of density matrices.

|µ(k)iAB =
1p
G(k)

kX

j=1

1p
j
|jjiAB

G(k) =
kX

j=1

1

j

[11] Pra, Rc 67:060302(R), 2003

|µ(k)iAB 7! |µ(k)iAB ⌦ |'iAB

✏ > 0 |'iAB

(1� ✏) k > m1/✏

F (⇢,�) = (tr(
qp

⇢�
p
⇢))2



Example: Quantum State 
Merging/State Splitting

✤ How much of a given resource is needed to do this?
✤ Our case:                                                       purification, free entanglement, classical 

communication to quantify.
✤ Horodecki et al. [12],                    with classical communication cost       :

✤ One-shot version,              with classical communication cost     for an error   [4]:

�BA0 ! �BA0R = | ih |BA0R

| ⌦niBA0R cn

c = lim
n!1

1

n
cn = H(�B) +H(�R)�H(�BR) = I(B : R)�

[12] Nature 436:673-676, 2005

| iBA0R

✏

c✏ ⇠= I✏
max

(B : R)�

Alice Bob

R

A‘   B A’ B
BobAlice

Rstate merging

state splitting

| iBA0R
R: reference system
   : entanglement

| iBA0R c✏

[4] Berta et al., CMP 306(3):579, 2011



Details: The Post-Selection 
Technique
✤ Christandl et al. [8]: Let       and        be quantum operations that act 

permutation-covariant on a n-partite system                     . Then

where              is a purification of the (de Finetti type) state

with         a pure state on                ,                ,                   and d(.) the 
measure on the normalized pure states on                induced by the 
Haar measure on the unitary group acting on                , normalized to            
.

kEAn � FAnk⌃  poly(n)k((EAn � FAn
)⌦ idRnR0

)(⇣AnRnR0
)k1

⇣AnRnR0

⇣AnRn =

Z
!⌦n
ARd(!AR)

!AR HR
⇠= HA HRn = H⌦n

RHA ⌦HR

Z
d(.) = 1

HA ⌦HR

HA ⌦HR

EAn FAn

HAn = H⌦n
A

[8] Christandl et al., PRL 102(2):020504, 2009


