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Classical Shannon Theory

+ Independent and identical distribution (IID) + interested in asymptotic rates.

+ At what rate can a channel A simulate the identity channel?

Transmitter Alice Receiver Bob
L Encoder (|t *, e Decoder iz

P —— —-"‘-d

A: channel
id: identity channel

+ Neither back communication nor shared randomness help.
[1] Shannon, Bst ] 27:379,623, 1948
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Classical Channel Stimulations

+ At what rate can the identity channel simulate a channel A (using shared randomness)?
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Classical Channel Stimulations

+ At what rate can the identity channel simulate a channel A (using shared randomness)?

Alice Bob
— . —
‘ .................................. ld identity channel
shared randomness
é A: channel

——-E‘,——-—g
A — -———-J

+ Classical reverse Shannon theorem, channel simulation is possible if and only if [2,3]:

¢ m)?XI(X et m)?XH(A(X))

| CersT(A) =
| :

[2] Bennett et al., IEEE TIF 48(10):2637, 2002 [3] Bennett et al., arXiv:0912.5537v2
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Quantum Shannon Theory

+ Independent and identical distribution (IID) + interested in asymptotic rates.
+ At what rate can a channel simulate the identity channel (using additional resources)?

Alice Bob
N Encoder BT @-——e Decoder £ 2

I additional resources®

&: quantum channel
id: quantum identity channel

/
7 7 . ‘! 7 ,
— —_—

*e.g. entanglement, classic communication (forward, backward, two-way)

* Quantum Channel Capacities [...]: @, Qr,@—,Q—, Qs

+ Entanglement-assisted quantum capacity [2]: iﬂs—_—'l_r
"4 QE(g) = — -maXI(B : R)

U By A HR (A | Tt 3
H(A), = —tr[palog pa]

[2] Bennett et al., IEEE TIF 48(10):2637, 2002
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+ Using entanglement, at what rate can the quantum identity channel simulate a
quantum channel?
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Quantum Reverse Shannon
Theorem

+ Using entanglement, at what rate can the quantum identity channel simulate a
quantum channel?

Alice Bob
L% Encoder ‘,-—-k*,-—-; Decoder & 2

P~ — m— | ———— PR ————

id: quantum identity channel

entanglement
g &: quantum channel

/

e —————— E e ———————

/

— T —

* Queintum reverse Shannon theorem, channel simulation is possible for [3,4]:
U555 mgxx REER) i) s el =00 (embezzling states)

[3] Bennett et al., arXiv:0912.5537v2 [4] Berta et al., CMP 306(3):579, 2011



Quantum Reverse Shannon
Theorem

+ Using entanglement, at what rate can the quantum identity channel simulate a
quantum channel?

Alice Bob
— 0 — O — [ —

-———-w *_—w

id: quantum identity channel

entanglement
= &: quantum channel

——-——?‘g
| —— ——

* Queintum reverse Shannon theorem, channel simulation is possible for [3,4]:
U555 m?x REER) i) s el =00 (embezzling states)

T T
|
!
|
!

| QorsT(€) = 5

| : s

————

+ Communication optimal, for more communication other tradeoffs are possible [3].
[3] Bennett et al., arXiv:0912.5537v2 [4] Berta et al., CMP 306(3):579, 2011
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Information Gamn of Quantum
Measurements

+ At what rate can the classical identity channel simulate a quantum measurement (using
shared randomness)?

Alice Bob
— ‘, —— ‘, LB Decoder £ 02
‘ .................................. id: Classical identity Channel

! shared randomness
M: quantum measurement
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Information Gamn of Quantum
Measurements

+ At what rate can the classical identity channel simulate a quantum measurement (using
shared randomness)?
Alice Bob

—-F-—-e--—-s Decoder -—-=

i shared randomness

id: classical identity channel
M: quantum measurement

)
. M f .
——— | e ——
P —

+ Measurement simulation is possible if and only if (universal measurement
compression) [5]:

c> mgXI(XB ; R)(M@id)((bp) i mSXH(XB)M(p)

[5] Berta et al., arXiv:1301.1594V1
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Information Gamn of Quantum
Measurements

+ At what rate can the classical identity channel simulate a quantum measurement (using
shared randomness)?
Alice Bob

— C= — O — S —

i shared randomness

id: classical identity channel
M: quantum measurement

4
' -
| —7 .

e ——— M

+ Measurement simulation is possible if and only if (universal measurement
compression) [5]:
c> mEJXI(XB ; R)(M@id)((bp) i m;)lXH(XB)M(p)

| Crg(M) = mgx I(XB : R)(meid)(®,) '
ly RS |

+ Following Winter [6]: C;g(M) is the infol‘ony the measurement!

[5] Berta et al., arXiv:1301.1594V1 [6] Winter, CMP 244(1):157, 2004
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Entanglement Cost of Quantum
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+ Using classical communication, at what rate can the quantum identity channel simulate
a quantum channel?
Alice Bob

U Encoder ‘,—-e‘,-—-e Decoder & 2

id: quantum identity channel
&: quantum channel

i classical communication

— “""



Entanglement Cost of Quantum
Channels

+ Using classical communication, at what rate can the quantum identity channel simulate
a quantum channel?
Alice Bob

— C= — O — S —

id: quantum identity channel
&: quantum channel

i classical communication

o ’
——éd

+ Quantum communication equivalent to ebits, channel simulation possible for [7]:

: .
g=e= lim —maxEp((E®" QL)(Pn))|Er(pap) = inf ZpiH(A)P’i PAB = Z}%P?AB

el el {pi.p*}

c =00 (unknown)

[7] Berta et al., IEEE ISIT Proc. p. 900, 2012



Entanglement Cost of Quantum
Channels

+ Using classical communication, at what rate can the quantum identity channel simulate
a quantum channel?
Alice Bob

— C= — O — S —

id: quantum identity channel
&: quantum channel

i classical communication

E

+ Quantum communication equivalent to ebits, channel simulation possible for [7]:
| .
o (s DE) Brons) = nt, > ni(AN s 3
¢ =00 (unknown) ! EC(S) — i maXEF((5®n ®I)((I) n)) (= Qs(E))

W R O [ sy O

e

+ Entanglement cost optimal, for less communication other tradeoffs are possible [3].
[7] Berta et al., IEEE ISIT Proc. p. 900, 2012 [3] Bennett et al., arXiv:0912.5537v2
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+ E§™ o to simulate F;° 5 : channel simulation with cost 'V (F%° 5)

Channel Simulation has to work for all (entangled) inputs!

* The diamond norm of a quantum operation is defined as

|€]lo = sup sup [|(€ @idg)(o)]li o]y = tr(Volo)
kEN ||o]l1 <1

A d n n,e . . 1 1 7",
* We need:|lim lim €505 — Falpllo =0 lim lim ;fﬂ( Noake s =00 &)

Post-selection technique for quantum channels [8]:

¢" is the purification of a special de Finetti state (a state which consists of n identical
and independent copies of a state on a single subsystem). No IID structure!

[8] Christandl et al., PRL 102(2):020504, 2009
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ES™ 5 to simulate Fy'° 5 : channel simulation with cost 2V (FyS 5)

Channel Simulation has to work for all (entangled) inputs!
The diamond norm of a quantum operation is defined as

|€]lo = sup sup [|(€ @idg)(o)]li o]y = tr(Volo)
kEN ||o]l1 <1

A d n n,e . . 1 1 7",
We need:|lim lim ity v alle =0 lim lim. ;fﬂ( L e

Post-selection technique for quantum channels [5]:

1L [ F™% o < poly(n) - [|((

¢" is the purification of a special de Finetti state (a state which consists of n identical
and independent copies of a state on a single subsystem). No IID structure!

Basic idea: create o™ = £%™((™) locally at Alice’s side, send it over to Bob’s side.
This defines the channel simulation F™¢!

[8] Christandl et al., PRL 102(2):020504, 2009
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Proof ldea: Randomness
Extractors with Side Information

+ h State transfer from Alice to Bob: o"

e =—

Use random coding schemes and analyze how well they perform in the one-shot regime
--> randomness extractors, also called decoupling (cf. Renner’s and Dupuis’ talk)!

* One-shot information theory, smooth entropy formalism [9,10].

+ Technically:

» (lassical reverse Shannon theorem: classical randomness extractor with classical
side information (e.g. random permutation).

 Information gain of quantum measurements: classical randomness extractor with
quantum side information (e.g. random permutation).

- Entanglement cost of quantum channels: quantum randomness extractor (e.g.
random unitary).

+ Quantum reverse Shannon theorem: quantum randomness extractor with quantum
side information (e.g. random unitary).

[9] Renner, PhD Thesis, ETHZ, 2005 [10] Tomamichel, PhD Thesis, ETHZ, 2011
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Eixtensions and Applications

+ Results: CoprsT(A) = max I(X : A(X)) classical reverse Shannon
Cre(M) = m[z)xxl (XB : B)(Mmsia)(@,) information gain of measurements
1
QorsT(&) = R I(B: R)¢gia)@,)  quantum reverse Shannon

sl &
Ec(é) = lim —max Ep((E®" @ Z)(®,»)) entanglement cost

== OO0 T

+ QOther tradeoffs are possible [3].

[3] Bennett et al., arXiv:0912.5537v2 [5] Berta et al., arXiv:1301.1594v1
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Eixtensions and Applications

+ Results: CoprsT(A) = max I(X : A(X)) classical reverse Shannon
Cre(M) = m[z)xxl (XB : B)(Mmsia)(@,) information gain of measurements
1
QorsT(&) = R I(B: R)¢gia)@,)  quantum reverse Shannon
1

Ec(é) = lim —max Ep((E®" @ Z)(®,»)) entanglement cost

== OO0 T

+ QOther tradeoffs are possible [3].

+ Purely information theoretic interest: classification of channels.

+ Determine upper bounds on strong converse capacities (applications in quantum
cryptography), cf. misc. talks at this workshop.

* Quantum rate distortion theory (lossy data compression), cf. Wilde’s talk Friday 14:30.

[3] Bennett et al., arXiv:0912.5537v2 [5] Berta et al., arXiv:1301.1594v1
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Results: CorstT(A) = max I(X : A(X)) classical reverse Shannon
Cre(M) = m[z)xxl (XB : B)(Mmsia)(@,) information gain of measurements
1
QorsT(&) = R I(B: R)¢gia)@,)  quantum reverse Shannon
1

Ec(é) = lim —max Ep((E®" @ Z)(®,»)) entanglement cost

== OO0 T

Other tradeoffs are possible [3].

Purely information theoretic interest: classification of channels.

Determine upper bounds on strong converse capacities (applications in quantum
cryptography), cf. misc. talks at this workshop.

Quantum rate distortion theory (lossy data compression), cf. Wilde’s talk Friday 14:30.
That's it...

[3] Bennett et al., arXiv:0912.5537v2 [5] Berta et al., arXiv:1301.1594v1
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Example for Classification of
Channels

Capacity of a classical channel A to simulate another classical channel A’ in the presence of
free shared randomness is given by:

Cr

-

Capacity of a quantum channel to simulate another quantum channel in the presence of free
entanglement is given by:




Example of Embezzling States

+ Introduced by Van Dam and Hayden [11]
* Definition: A pure, bipartite state of the form

| . 1 1 .
| |u(k))as = GOR) Z 7

where G(k) = Z %, is called embezzling state of index k.

j=1
* Proposition: Let € > 0 and let |©) ABbe a pure bipartite state of Schmidt rank m. Then
the transformation

(k) aB — |1(k))aB @ |p) aB

can be accomplished with fidelity better than (1 — ¢)for k > m/€with local isometries
at A and B.
* Definition: The fidelity between two density matrices ¢ and o is defined as

F(p,0) = (tx(y/\/poy/p))?

and it is a notion of distance on the set of density matrices.

[11] Pra, Rc 67:060302(R), 2003



Example: Quantum State

Merging/State Splitting

state merging R

R: reference system

oo : entanglement

state splitting

Alice Bob

How much of a given resource is needed to do this?

Our case: opar — 0pa'r = |¥)(V¥|B A’ R purification, free entanglement, classical
communication to quantity.

Horodecki et al. [12], |¥®™) pa-r with classical communication costc,, :

= lcn = H(opg)+ H(or) — H(opr) =I(B: R),

n—oo M
One-shot version, |¥) sarr with classical communication cost Cc for an error € [4]:
'&ce =

max
[12] Nature 436:673-676, 2005 [4] Berta et al., CMP 306(3):579, 2011




Details: The Post-Selection
lechnique

* Christandl et al. [8]: Let £4»and F4~ be quantum operations that act
permutation-covariant on a n-partite system Han = HS". Then

HgAn = fAnHo < p01Y( )H((E;An — Fn

N

where (4 rn g/ 1S a purification of the (de Finetti type) state
CAnRn = /wf%?gd(wAR)

with wara pure state onH 4 @ Hr, Hr = Ha, Hr = HE" and d(.) the
measure on the normalized pure states on {4 ® #rinduced by the
Haar measure on the unitary group acting on 44 ® Hz, normalized to

: /d(.):l

[8] Christandl et al., PRL 102(2):020504, 2009



